Skip to main content
Mathematics LibreTexts

14.2: Orthogonal and Orthonormal Bases

  • Page ID
    2086
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    There are many other bases that behave in the same way as the standard basis. As such, we will study:

    1. \(\textit{Orthogonal bases}\) \(\{v_{1}, \ldots, v_{n} \}\):
    \[
    v_{i}\cdot v_{j}=0 \textit{ if } i\neq j\, .
    \]
    In other words, all vectors in the basis are perpendicular.

    2. \(\textit{Orthonormal bases}\) \(\{u_{1}, \ldots, u_{n} \}\):
    \[
    u_{i}\cdot u_{j} = \delta_{ij}.
    \]
    In addition to being orthogonal, each vector has unit length.

    Suppose \(T=\{u_{1}, \ldots, u_{n} \}\) is an orthonormal basis for \(\Re^{n}\). Because \(T\) is a basis, we can write any vector \(v\) uniquely as a linear combination of the vectors in \(T\):
    \[
    v=c^{1}u_{1}+\cdots c^{n}u_{n}.
    \]
    Since \(T\) is orthonormal, there is a very easy way to find the coefficients of this linear combination. By taking the dot product of \(v\) with any of the vectors in \(T\), we get:
    \begin{eqnarray*}
    v\cdot u_{i} &=& c^{1}u_{1}\cdot u_{i} + \cdots + c^{i}u_{i}\cdot u_{i} + \cdots + c^{n}u_{n}\cdot u_{i} \\
    & = & c^{1}\cdot 0 + \cdots + c^{i}\cdot 1 + \cdots + c^{n}\cdot 0 \\
    & = & c^{i}, \\
    \Rightarrow\, c^{i} &=& v\cdot u_{i} \\
    \Rightarrow\ v &=& (v\cdot u_{1}) u_{1} + \cdots + (v\cdot u_{n})u_{n}\\
    &=& \sum_{i} (v\cdot u_{i})u_{i}.
    \end{eqnarray*}

    This proves the theorem:

    Theorem

    For an orthonormal basis \(\{u_{1}, \ldots, u_{n} \}\), any vector \(v\) can be expressed as
    \[
    v =\sum_{i} (v\cdot u_{i})u_{i}.
    \]

     

    Contributor

    This page titled 14.2: Orthogonal and Orthonormal Bases is shared under a not declared license and was authored, remixed, and/or curated by David Cherney, Tom Denton, & Andrew Waldron.