Skip to main content
Mathematics LibreTexts

4.8: Integrals Involving Arctrig Functions

  • Page ID
    527
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Recall that

    \[\dfrac{d}{dx} \tan^{-1} x = \dfrac{1}{1+x^2},\nonumber \]

    \[\dfrac{d}{dx} \sin^{-1} x = \dfrac{1}{\sqrt{1-x^2}},\nonumber \]

    \[\dfrac{d}{dx} \sec^{-1} x = \dfrac{1}{x\sqrt{x^2-1}}.\nonumber \]

    These three formulas immediately imply to integration:

    \[ \int \dfrac{1}{1+x^2} dx = \tan^{-1} x + C,\nonumber \]

    \[ \int \dfrac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C,\nonumber \]

    \[ \int \dfrac{1}{x\sqrt{x^2-1}} dx = \sec^{-1} x + C.\nonumber \]

    Example 1

    Solve \( \int \dfrac{dx}{4+x^2}\).

    Solution

    \[ \int \dfrac{dx}{4+x^2} = \dfrac{1}{4} \int \dfrac{dx}{1+\left( \dfrac{x}{2} \right)^2}.\nonumber \]

    Let \(u= \dfrac{x}{2}\) so \(du=\dfrac{1}{2}dx\)

    and the integral becomes

    \[\begin{align*} \dfrac{1}{2} \int \dfrac{du}{1+u^2} = \dfrac{1}{2} \tan^{-1} u + C &= \dfrac{1}{2} \tan^{-1} \left( \dfrac{x}{2} \right) + C. \end{align*}\]

    Example 2

    Solve \( \int \dfrac{dx}{x \sqrt{x^2-4}} \).

    Solution

    \[\begin{align*} \int \dfrac{dx}{x \sqrt{x^2-4}} &= \int \dfrac{x\,dx}{x^2 \sqrt{4 (x^4/4 -1)}} \\ &= \dfrac{1}{4} \int \dfrac{x\,dx}{(x^2/2)\sqrt{(x^2/2)^2-1}} \end{align*}\]

    which becomes

    \[\begin{align*} \dfrac{1}{4} \int \dfrac{du}{u\sqrt{u^2-1}} &= \dfrac{1}{4} \sec^{-1} u + C \\ &= \dfrac{1}{4} \sec^{-1} \left(\dfrac{x^2}{2}\right) + C. \end{align*}\]

    Example 3

    Solve \(\int \dfrac{2x\, dx}{x^2+6x+13}\).

    Solution

    \[\begin{align*} \int \dfrac{2x\, dx}{x^2+6x+13} &= \int \dfrac{2x\, dx}{(x+3)^2 + 4} \\ &=\dfrac{1}{2} \int \dfrac{x\, dx}{ \left(\dfrac{x+3}{2} \right)^2+1} \end{align*}\]

    let \(u= \dfrac{x+3}{2}\) and \(du = \dfrac{1}{2} dx\) so \(x = 2u-3\).

    \[\begin{align*} \int \dfrac{(2u-3)\, du}{u^2+1} &= \int \dfrac{2u\,du}{u^2+1}-3\int\dfrac{du}{u^2+1} \\ &= \ln \left| u^2+1 \right| -3\tan^{-1} u+C \\ &= \ln \left(\dfrac{ \left(\dfrac{x+3}{2} \right)^2}{4} +1\right) - 3 \tan^{-1}\dfrac{x+3}{2} + C \end{align*}.\nonumber \]

    Contributors and Attributions


    This page titled 4.8: Integrals Involving Arctrig Functions is shared under a not declared license and was authored, remixed, and/or curated by Larry Green.

    • Was this article helpful?