Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

3.2 Quadratic Functions

In this section, we will explore the family of 2nd degree polynomials, the quadratic functions.  While they share many characteristics of polynomials in general, the calculations involved in working with quadratics is typically a little simpler, which makes them a good place to start our exploration of short run behavior.  In addition, quadratics commonly arise from problems involving area and projectile motion, providing some interesting applications.

Example 1

A backyard farmer wants to enclose a rectangular space for a new garden.  She has purchased 80 feet of wire fencing to enclose 3 sides, and will put the 4th side against the backyard fence.  Find a formula for the area enclosed by the fence if the sides of fencing perpendicular to the existing fence have length L.

SOLUTION

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image001.gif

In a scenario like this involving geometry, it is often helpful to draw a picture.  It might also be helpful to introduce a temporary variable, W, to represent the side of fencing parallel to the 4th side or backyard fence. 

 

Since we know we only have 80 feet of fence available, we know that File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image003.gif, or more simply, File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image005.gif.  This allows us to represent the width, W, in terms of LFile:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image007.gif

 

Now we are ready to write an equation for the area the fence encloses.  We know the area of a rectangle is length multiplied by width, so

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image009.gif

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image011.gif

This formula represents the area of the fence in terms of the variable length L.

Short run Behavior: Vertex

We now explore the interesting features of the graphs of quadratics. In addition to intercepts, quadratics have an interesting feature where they change direction, called the vertex. You probably noticed that all quadratics are related to transformations of the basic quadratic functionFile:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image013.gif.

Example 2

Write an equation for the quadratic graphed below as a transformation of File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image013.gif, then expand the formula and simplify terms to write the equation in standard polynomial form.

Description: Description: Graphs

SOLUTION

 

We can see the graph is the basic quadratic shifted to the left 2 and down 3, giving a formula in the form File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image017.gif.  By plugging in a point that falls on the grid, such as (0,-1), we can solve for the stretch factor:

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image019.gif

Written as a transformation, the equation for this formula is File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image021.gif.  To write this in standard polynomial form, we can expand the formula and simplify terms:

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image023.gif

Notice that the horizontal and vertical shifts of the basic quadratic determine the location of the vertex of the parabola; the vertex is unaffected by stretches and compressions.

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image024.gif

Try it Now

  1. File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image026.jpgA coordinate grid has been superimposed over the quadratic path of a basketball[1].  Find an equation for the path of the ball.  Does he make the basket?

 

 

 

 

 

 

Forms of Quadratic Functions

  • The standard form of a quadratic function is File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image028.gif
  • The transformation form of a quadratic function is File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image030.gif
  • The vertex of the quadratic function is located at (h, k), where h and k are the numbers in the transformation form of the function.  Because the vertex appears in the transformation form, it is often called the vertex form.

 

In the previous example, we saw that it is possible to rewrite a quadratic function given in transformation form and rewrite it in standard form by expanding the formula.  It would be useful to reverse this process, since the transformation form reveals the vertex.

Expanding out the general transformation form of a quadratic gives:

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image032.gif

This should be equal to the standard form of the quadratic:

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image034.gif

The second degree terms are already equal.  For the linear terms to be equal, the coefficients must be equal:

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image036.gif, so File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image038.gif

This provides us a method to determine the horizontal shift of the quadratic from the standard form.  We could likewise set the constant terms equal to find:

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image040.gif, so File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image042.gif

 

In practice, though, it is usually easier to remember that k is the output value of the function when the input is h, so File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image044.gif.

Finding the Vertex of a Quadratic

For a quadratic given in standard form, the vertex (h, k) is located at:

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image038.gif,   File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image046.gif

Example 3

Find the vertex of the quadratic File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image048.gif.  Rewrite the quadratic into transformation form (vertex form).

SOLUTION

The horizontal coordinate of the vertex will be at File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image050.gif

The vertical coordinate of the vertex will be at File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image052.gif

Rewriting into transformation form, the stretch factor will be the same as the a in the original quadratic.  Using the vertex to determine the shifts,

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image054.gif

Try it Now

2. Given the equation File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image056.gif write the equation in standard form and then in transformation/vertex form.

 

In addition to enabling us to more easily graph a quadratic written in standard form, finding the vertex serves another important purpose – it allows us to determine the maximum or minimum value of the function, depending on which way the graph opens.

Example 4

Returning to our backyard farmer from the beginning of the section, what dimensions should she make her garden to maximize the enclosed area?

SOLUTION

Earlier we determined the area she could enclose with 80 feet of fencing on three sides was given by the equation File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image011.gif.  Notice that quadratic has been vertically reflected, since the coefficient on the squared term is negative, so the graph will open downwards, and the vertex will be a maximum value for the area.

In finding the vertex, we take care since the equation is not written in standard polynomial form with decreasing powers.  But we know that a is the coefficient on the squared term, so a = -2, b = 80, and c = 0. 

Finding the vertex:

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image058.gif,   File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image060.gif

The maximum value of the function is an area of 800 square feet, which occurs when L = 20 feet.  When the shorter sides are 20 feet, that leaves 40 feet of fencing for the longer side.  To maximize the area, she should enclose the garden so the two shorter sides have length 20 feet, and the longer side parallel to the existing fence has length 40 feet.

Example 5

A local newspaper currently has 84,000 subscribers, at a quarterly charge of $30.  Market research has suggested that if they raised the price to $32, they would lose 5,000 subscribers.   Assuming that subscriptions are linearly related to the price, what price should the newspaper charge for a quarterly subscription to maximize their revenue?

Revenue is the amount of money a company brings in.  In this case, the revenue can be found by multiplying the charge per subscription times the number of subscribers.  We can introduce variables, C for charge per subscription and S for the number subscribers, giving us the equation

Revenue = CS

Since the number of subscribers changes with the price, we need to find a relationship between the variables.  We know that currently S = 84,000 and C = 30, and that if they raise the price to $32 they would lose 5,000 subscribers, giving a second pair of values, C = 32 and S = 79,000.  From this we can find a linear equation relating the two quantities.  Treating C as the input and S as the output, the equation will have form File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image062.gif.  The slope will be

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image064.gif

This tells us the paper will lose 2,500 subscribers for each dollar they raise the price.  We can then solve for the vertical intercept

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image066.gif                               Plug in the point S = 85,000 and C = 30

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image068.gif                   Solve for b

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image070.gif

This gives us the linear equation File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image072.gif relating cost and subscribers.  We now return to our revenue equation.

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image074.gif                                  Substituting the equation for S from above

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image076.gif   Expanding

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image078.gif

We now have a quadratic equation for revenue as a function of the subscription charge.  To find the price that will maximize revenue for the newspaper, we can find the vertex:

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image080.gif

The model tells us that the maximum revenue will occur if the newspaper charges $31.80 for a subscription.  To find what the maximum revenue is, we can evaluate the revenue equation:

Maximum Revenue = File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image082.gif$2,528,100

Short run Behavior: Intercepts

As with any function, we can find the vertical intercepts of a quadratic by evaluating the function at an input of zero, and we can find the horizontal intercepts by solving for when the output will be zero. Notice that depending upon the location of the graph, we might have zero, one, or two horizontal intercepts.

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image084.jpg

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image086.jpg

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image088.jpg

zero horizontal intercepts

one horizontal intercept

two horizontal intercepts

Example 6

Find the vertical and horizontal intercepts of the quadratic File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image090.gif

SOLUTION

We can find the vertical intercept by evaluating the function at an input of zero:

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image092.gif                        Vertical intercept at (0,-2)

For the horizontal intercepts, we solve for when the output will be zero

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image094.gif

In this case, the quadratic can be factored easily, providing the simplest method for solution

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image096.gif

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image098.gif     or         File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image100.gif                     Horizontal intercepts at File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image102.gif and (-2,0)

Notice that in the standard form of a quadratic, the constant term c reveals the vertical intercept of the graph.

Example 7

Find the horizontal intercepts of the quadratic File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image104.gif

SOLUTION

Again we will solve for when the output will be zero

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image106.gif

Since the quadratic is not easily factorable in this case, we solve for the intercepts by first rewriting the quadratic into transformation form.

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image108.gif        File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image110.gif

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image112.gif

Now we can solve for when the output will be zero

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image114.gif      

The graph has horizontal intercepts at File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image116.gifand File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image118.gif

Try it Now

3. In Try it Now problem 2 we found the standard & transformation form for the function File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image056.gif.  Now find the Vertical & Horizontal intercepts (if any).

 

This process is done commonly enough that sometimes people find it easier to solve the problem once in general and remember the formula for the result, rather than repeating the process each time.  Based on our previous work we showed that any quadratic in standard form can be written into transformation form as:

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image121.gif

Solving for the horizontal intercepts using this general equation gives:

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image123.gif        start to solve for x by moving the constants to the other side File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image125.gif                divide both sides by a

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image127.gif              find a common denominator to combine fractions

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image129.gif         combine the fractions on the left side of the equation

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image131.gif                        take the square root of both sides

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image133.gif           subtract b/2a from both sides

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image135.gif           combining the fractions

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image137.gif              Notice that this can yield two different answers for x

 

Quadratic Formula

For a quadratic function given in standard form File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image139.gif, the quadratic formula gives the horizontal intercepts of the graph of this function.

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image137.gif

 

Example 8

A ball is thrown upwards from the top of a 40 foot high building at a speed of 80 feet per second.  The ball’s height above ground can be modeled by the equation File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image142.gif

  1. What is the maximum height of the ball?
  2. When does the ball hit the ground?

 

SOLUTION

To find the maximum height of the ball, we would need to know the vertex of the quadratic.

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image144.gif,   File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image146.gif

The ball reaches a maximum height of 140 feet after 2.5 seconds.

To find when the ball hits the ground, we need to determine when the height is zero – when H(t) = 0.  While we could do this using the transformation form of the quadratic, we can also use the quadratic formula:

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image148.gif

Since the square root does not simplify nicely, we can use a calculator to approximate the values of the solutions:

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image150.gif    or         File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image152.gif

The second answer is outside the reasonable domain of our model, so we conclude the ball will hit the ground after about 5.458 seconds.

Try it Now

4. For these two equations determine if the vertex will be a maximum value or a minimum value.

          a.  File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image154.gif

          b.  File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image156.gif

Important Topics of this Section

  • Quadratic functions
    • Standard form
    • Transformation form/Vertex form
    • Vertex as a maximum / Vertex as a minimum
  • Short run behavior
    • Vertex / Horizontal & Vertical intercepts
  • Quadratic formula

 

Try it Now Answers

File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image158.jpg1. The path passes through the origin with vertex at (-4, 7).  File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image160.gif.  To make the shot, h(-7.5) would need to be about 4.  File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image162.gif; he doesn’t make it.

 

2. File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image164.gif in Standard form;  File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image166.gifin Transformation form

 

3. Vertical intercept at (0, 13),  NO horizontal intercepts.

 

4. a. Vertex is a minimum value

    b. Vertex is a maximum value

 


[1] From http://blog.mrmeyer.com/?p=4778, © Dan Meyer, CC-BY

Section 3.2 Exercises

Write an equation for the quadratic function graphed.

1. Description: Description: http://localhost/imathas/filter/graph/svgimg.php?sscr=-5%2C5%2C-5%2C5%2C1%2C1%2C1%2C1%2C1%2C200%2C200%2Cfunc%2C%28x-2%29%5E2-3%2Cnull%2C0%2C0%2C%2C%2Cblack%2C1%2Cnone                            2. Description: Description: http://localhost/imathas/filter/graph/svgimg.php?sscr=-5%2C5%2C-1%2C9%2C1%2C1%2C1%2C1%2C1%2C200%2C200%2Cfunc%2C%28x%2B1%29%5E2%2B2%2Cnull%2C0%2C0%2C%2C%2Cblack%2C1%2Cnone

 

3. Description: Description: http://localhost/imathas/filter/graph/svgimg.php?sscr=-5%2C5%2C-1%2C9%2C1%2C1%2C1%2C1%2C1%2C200%2C200%2Cfunc%2C-2%28x-2%29%5E2%2B7%2Cnull%2C0%2C0%2C%2C%2Cblack%2C1%2Cnone                            4. Description: Description: http://localhost/imathas/filter/graph/svgimg.php?sscr=-5%2C5%2C-7%2C3%2C1%2C1%2C1%2C1%2C1%2C200%2C200%2Cfunc%2C-3%28x%2B1%29%5E2%2B2%2Cnull%2C0%2C0%2C%2C%2Cblack%2C1%2Cnone

 

5. Description: Description: http://localhost/imathas/filter/graph/svgimg.php?sscr=-3%2C6%2C-3%2C6%2C1%2C1%2C1%2C1%2C1%2C200%2C200%2Cfunc%2C1%2F2%28x-3%29%5E2-1%2Cnull%2C0%2C0%2C%2C%2Cblack%2C1%2Cnone                            6. Description: Description: http://localhost/imathas/filter/graph/svgimg.php?sscr=-5%2C3%2C-3%2C6%2C1%2C1%2C1%2C1%2C1%2C200%2C200%2Cfunc%2C-1%2F4%28x%2B2%29%5E2%2B3%2Cnull%2C0%2C0%2C%2C%2Cblack%2C1%2Cnone

 

For each of the follow quadratic functions, find a) the vertex, b) the vertical intercept, and c) the horizontal intercepts.

7. File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image014.gif                                 8. File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image016.gif

9. File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image018.gif                                  10. File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image020.gif

11. File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image022.gif                                   12. File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image024.gif

 

Rewrite the quadratic function into vertex form.

13. File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image026.gif                                14. File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image028.gif

15. File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image030.gif                                 16. File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image032.gif

17. Find the values of b and c so File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image034.gif has vertex File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image036.gif

18. Find the values of b and c so File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image038.gif has vertex File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image040.gif

Write an equation for a quadratic with the given features

  1. x-intercepts (-3, 0) and (1, 0), and ­­y intercept (0, 2)
  2. x-intercepts (2, 0) and (-5, 0), and ­­y intercept (0, 3)
  3. x-intercepts (2, 0) and (5, 0), and ­­y intercept (0, 6)
  4. x-intercepts (1, 0) and (3, 0), and ­­y intercept (0, 4)
  5. Vertex at (4, 0), and y intercept (0, -4)
  6. Vertex at (5, 6), and y intercept (0, -1)
  7. Vertex at (-3, 2), and passing through (3, -2)
  8. Vertex at (1, -3), and passing through (-2, 3)
  9. A rocket is launched in the air.  Its height, in meters above sea level, as a function of time, in seconds, is given by File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image042.gif.
    1. From what height was the rocket launched?
    2. How high above sea level does the rocket reach its peak?
    3. Assuming the rocket will splash down in the ocean, at what time does splashdown occur?
  10. A ball is thrown in the air from the top of a building.  Its height, in meters above ground, as a function of time, in seconds, is given by File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image044.gif
  11. From what height was the ball thrown?
  12. How high above ground does the ball reach its peak?
  13. When does the ball hit the ground?
  14. The height of a ball thrown in the air is given by File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image046.gif, where x is the horizontal distance in feet from the point at which the ball is thrown.
  15. How high is the ball when it was thrown?
  16. What is the maximum height of the ball?
  17. How far from the thrower does the ball strike the ground?
  18. A javelin is thrown in the air.  Its height is given by File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image048.gif, where x is the horizontal distance in feet from the point at which the javelin is thrown.
  19. How high is the javelin when it was thrown?
  20. What is the maximum height of the javelin?
  21. How far from the thrower does the javelin strike the ground?
  1. A box with a square base and no top is to be made from a square piece of cardboard by cutting 6 in. squares out of each corner and folding up the sides. The box needs to hold 1000 in3. How big a piece of cardboard is needed?
  2. A box with a square base and no top is to be made from a square piece of cardboard by cutting 4 in. squares out of each corner and folding up the sides. The box needs to hold 2700 in3. How big a piece of cardboard is needed?
  3. File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image049.gifA farmer wishes to enclose two pens with fencing, as shown.  If the farmer has 500 feet of fencing to work with, what dimensions will maximize the area enclosed?

 

  1. File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image050.gifA farmer wishes to enclose three pens with fencing, as shown.  If the farmer has 700 feet of fencing to work with, what dimensions will maximize the area enclosed?
  2. You have a wire that is 56 cm long. You wish to cut it into two pieces. One piece will be bent into the shape of a square. The other piece will be bent into the shape of a circle. Let A represent the total area enclosed by the square and the circle. What is the circumference of the circle when A is a minimum?
  3. You have a wire that is 71 cm long. You wish to cut it into two pieces. One piece will be bent into the shape of a right triangle with legs of equal length. The other piece will be bent into the shape of a circle. Let A represent the total area enclosed by the triangle and the circle. What is the circumference of the circle when A is a minimum?
  4. A soccer stadium holds 62,000 spectators. With a ticket price of $11, the average attendance has been 26,000. When the price dropped to $9, the average attendance rose to 31,000. Assuming that attendance is linearly related to ticket price, what ticket price would maximize revenue?
  5. A farmer finds that if she plants 75 trees per acre, each tree will yield 20 bushels of fruit. She estimates that for each additional tree planted per acre, the yield of each tree will decrease by 3 bushels. How many trees should she plant per acre to maximize her harvest?
  6. Description: Description: Picture1A hot air balloon takes off from the edge of a mountain lake. Impose a coordinate system as pictured and assume that the path of the balloon follows the graph of File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image054.gif. The land rises at a constant incline from the lake at the rate of 2 vertical feet for each 20 horizontal feet. [UW]
    1. What is the maximum height of the balloon above water level?
    2. What is the maximum height of the balloon above ground level?
    3. Where does the balloon land on the ground?
    4. Where is the balloon 50 feet above the ground?
  7. Description: Description: Picture10A hot air balloon takes off from the edge of a plateau. Impose a coordinate system as pictured below and assume that the path the balloon follows is the graph of the quadratic function File:/C:\Users\DELMAR~1\AppData\Local\Temp\msohtmlclip1\01\clip_image058.gif. The land drops at a constant incline from the plateau at the rate of 1 vertical foot for each 5 horizontal feet. [UW]
    1. What is the maximum height of the balloon above plateau level?
    2. What is the maximum height of the balloon above ground level?
    3. Where does the balloon land on the ground?
    4. Where is the balloon 50 feet above the ground?

Contributors

  • David Lippman (Pierce College)
  • Melonie Rasmussen (Pierce College)