$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 5-1. Angles

Angles
In this section, you will:
• Draw angles in standard position.
• Convert between degrees and radians.
• Find coterminal angles.
• Find the length of a circular arc.
• Use linear and angular speed to describe motion on a circular path.

A golfer swings to hit a ball over a sand trap and onto the green. An airline pilot maneuvers a plane toward a narrow runway. A dress designer creates the latest fashion. What do they all have in common? They all work with angles, and so do all of us at one time or another. Sometimes we need to measure angles exactly with instruments. Other times we estimate them or judge them by eye. Either way, the proper angle can make the difference between success and failure in many undertakings. In this section, we will examine properties of angles.

# Drawing Angles in Standard Position

Properly defining an angle first requires that we define a ray. A ray consists of one point on a line and all points extending in one direction from that point. The first point is called the endpoint of the ray. We can refer to a specific ray by stating its endpoint and any other point on it. The ray in [link] can be named as ray EF, or in symbol form <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mover accent="true"><mrow><mi>E</mi><mi>F</mi></mrow><mo>→</mo></mover><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

<figure class="small" id="Figure_05_01_001"></figure>

An angle is the union of two rays having a common endpoint. The endpoint is called the vertex of the angle, and the two rays are the sides of the angle. The angle in [link] is formed from<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mover accent="true"/></mrow></annotation-xml></semantics>[/itex] ED →  and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mover accent="true"/></mrow></annotation-xml></semantics>[/itex] EF → . Angles can be named using a point on each ray and the vertex, such as angle DEF, or in symbol form<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> ∠</mtext><mi>D</mi><mi>E</mi><mi>F</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

<figure class="small" id="Figure_05_01_002"></figure>

Greek letters are often used as variables for the measure of an angle. [link] is a list of Greek letters commonly used to represent angles, and a sample angle is shown in [link].

 θ[/itex] φorϕ[/itex] α[/itex] β[/itex] γ[/itex] theta phi alpha beta gamma
<figure class="small" id="Figure_05_01_003"> <figcaption>Angle theta, shown as<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo>∠</mo><mi>θ</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]</figcaption> </figure>

Angle creation is a dynamic process. We start with two rays lying on top of one another. We leave one fixed in place, and rotate the other. The fixed ray is the initial side, and the rotated ray is the terminal side. In order to identify the different sides, we indicate the rotation with a small arc and arrow close to the vertex as in [link].

<figure class="small" id="Figure_05_01_004"></figure>

As we discussed at the beginning of the section, there are many applications for angles, but in order to use them correctly, we must be able to measure them. The measure of an angle is the amount of rotation from the initial side to the terminal side. Probably the most familiar unit of angle measurement is the degree. One degree is<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] 1 360  of a circular rotation, so a complete circular rotation contains 360 degrees. An angle measured in degrees should always include the unit “degrees” after the number, or include the degree symbol °. For example, 90 degrees = 90°.

To formalize our work, we will begin by drawing angles on an x-y coordinate plane. Angles can occur in any position on the coordinate plane, but for the purpose of comparison, the convention is to illustrate them in the same position whenever possible. An angle is in standard position if its vertex is located at the origin, and its initial side extends along the positive x-axis. See [link].

<figure class="small" id="Figure_05_01_005"></figure>

If the angle is measured in a counterclockwise direction from the initial side to the terminal side, the angle is said to be apositive angle. If the angle is measured in a clockwise direction, the angle is said to be a negative angle.

Drawing an angle in standard position always starts the same way—draw the initial side along the positive x-axis. To place the terminal side of the angle, we must calculate the fraction of a full rotation the angle represents. We do that by dividing the angle measure in degrees by 360°. For example, to draw a 90° angle, we calculate that<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] 90° 360° = 1 4 . So, the terminal side will be one-fourth of the way around the circle, moving counterclockwise from the positive x-axis. To draw a 360° angle, we calculate that<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] 360° 360° =1. So the terminal side will be 1 complete rotation around the circle, moving counterclockwise from the positive x-axis. In this case, the initial side and the terminal side overlap. See [link].

<figure class="medium" id="Figure_05_01_006"></figure>

Since we define an angle in standard position by its terminal side, we have a special type of angle whose terminal side lies on an axis, a quadrantal angle. This type of angle can have a measure of 0°, 90°, 180°, 270° or 360°. See [link].

<figure id="Figure_05_01_018"> <figcaption>Quadrantal angles have a terminal side that lies along an axis. Examples are shown.</figcaption> </figure>

Quadrantal angles are angles whose terminal side lies on an axis, including 0°, 90°, 180°, 270°, or 360°.

Given an angle measure in degrees, draw the angle in standard position.

1. Express the angle measure as a fraction of 360°.
2. Reduce the fraction to simplest form.
3. Draw an angle that contains that same fraction of the circle, beginning on the positive x-axis and moving counterclockwise for positive angles and clockwise for negative angles.
Drawing an Angle in Standard Position Measured in Degrees
1. Sketch an angle of 30° in standard position.
2. Sketch an angle of −135° in standard position.
1. Divide the angle measure by 360°.
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>30°</mn></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 360° = 1 12

To rewrite the fraction in a more familiar fraction, we can recognize that

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mn>1</mn></mfrac></mrow></annotation-xml></semantics>[/itex] 12 = 1 3 ( 1 4 )

One-twelfth equals one-third of a quarter, so by dividing a quarter rotation into thirds, we can sketch a line at 30° as in[link].

<figure class="small" id="Figure_05_01_007"></figure>
2. Divide the angle measure by 360°.
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mo>−</mo><mn>135°</mn></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 360° =− 3 8

In this case, we can recognize that

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 3 8 =− 3 2 ( 1 4 )

Negative three-eighths is one and one-half times a quarter, so we place a line by moving clockwise one full quarter and one-half of another quarter, as in [link].

<figure class="small" id="Figure_05_01_008"></figure>

Show an angle of 240° on a circle in standard position.

# Converting Between Degrees and Radians

Dividing a circle into 360 parts is an arbitrary choice, although it creates the familiar degree measurement. We may choose other ways to divide a circle. To find another unit, think of the process of drawing a circle. Imagine that you stop before the circle is completed. The portion that you drew is referred to as an arc. An arc may be a portion of a full circle, a full circle, or more than a full circle, represented by more than one full rotation. The length of the arc around an entire circle is called thecircumference of that circle.

The circumference of a circle is<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>C</mi><mo>=</mo><mn>2</mn><mi>π</mi><mi>r</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex] If we divide both sides of this equation by<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>r</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex]we create the ratio of the circumference to the radius, which is always<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]regardless of the length of the radius. So the circumference of any circle is<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mo>≈</mo><mn>6.28</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]times the length of the radius. That means that if we took a string as long as the radius and used it to measure consecutive lengths around the circumference, there would be room for six full string-lengths and a little more than a quarter of a seventh, as shown in [link].

<figure class="small" id="Figure_05_01_010"></figure>

This brings us to our new angle measure. One radian is the measure of a central angle of a circle that intercepts an arc equal in length to the radius of that circle. A central angle is an angle formed at the center of a circle by two radii. Because the total circumference equals<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]times the radius, a full circular rotation is<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]radians. So

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mtable columnalign="left"><mtr><mtd><mrow/></mtd></mtr><mtr><mtd><mn>2</mn><mi>π</mi><mtext> radians</mtext><mo>=</mo><msup/></mtd></mtr></mtable></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 360 ∘    π radians= 360 ∘ 2 = 180 ∘       1 radian= 180 ∘ π ≈ 57.3 ∘

See [link]. Note that when an angle is described without a specific unit, it refers to radian measure. For example, an angle measure of 3 indicates 3 radians. In fact, radian measure is dimensionless, since it is the quotient of a length (circumference) divided by a length (radius) and the length units cancel out.

<figure class="small" id="Figure_05_01_011"> <figcaption>The angle <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>t</mi></mrow></annotation-xml></semantics>[/itex] sweeps out a measure of one radian. Note that the length of the intercepted arc is the same as the length of the radius of the circle.</figcaption> </figure>

## Relating Arc Lengths to Radius

An arc length<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>s</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is the length of the curve along the arc. Just as the full circumference of a circle always has a constant ratio to the radius, the arc length produced by any given angle also has a constant relation to the radius, regardless of the length of the radius.

This ratio, called the radian measure, is the same regardless of the radius of the circle—it depends only on the angle. This property allows us to define a measure of any angle as the ratio of the arc length<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>s</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]to the radius<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>r</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]See [link].

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mtable columnalign="left"><mtr><mtd><mi>s</mi><mo>=</mo><mi>r</mi><mi>θ</mi></mtd></mtr></mtable></annotation-xml></semantics>[/itex] θ= s r

If<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>s</mi><mo>=</mo><mi>r</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] then<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] r r = 1 radian.

<figure id="Figure_05_01_013"> <figcaption>(a) In an angle of 1 radian, the arc length <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>s</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]equals the radius<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>r</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex] (b) An angle of 2 radians has an arc length <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>s</mi><mo>=</mo><mn>2</mn><mi>r</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex](c) A full revolution is <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>2</mn><mi>π</mi></mrow></annotation-xml></semantics>[/itex] or about 6.28 radians.</figcaption> </figure>

To elaborate on this idea, consider two circles, one with radius 2 and the other with radius 3. Recall the circumference of a circle is <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>C</mi><mo>=</mo><mn>2</mn><mi>π</mi><mi>r</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] where <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>r</mi></mrow></annotation-xml></semantics>[/itex] is the radius. The smaller circle then has circumference <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>2</mn><mi>π</mi><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>=</mo><mn>4</mn><mi>π</mi></mrow></annotation-xml></semantics>[/itex] and the larger has circumference <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>2</mn><mi>π</mi><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo><mo>=</mo><mn>6</mn><mi>π</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex] Now we draw a 45° angle on the two circles, as in [link].

<figure class="small" id="Figure_05_01_012"> <figcaption>A 45° angle contains one-eighth of the circumference of a circle, regardless of the radius.</figcaption> </figure>

Notice what happens if we find the ratio of the arc length divided by the radius of the circle.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable><mtr><mtd><mrow><mtext>Smaller circle: </mtext><mfrac/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 1 2 π 2 = 1 4 π   Larger circle:  3 4 π 3 = 1 4 π

Since both ratios are<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] 1 4 π, the angle measures of both circles are the same, even though the arc length and radius differ.

One radian is the measure of the central angle of a circle such that the length of the arc between the initial side and the terminal side is equal to the radius of the circle. A full revolution (360°) equals<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]radians. A half revolution (180°) is equivalent to<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>π</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]radians.

The radian measure of an angle is the ratio of the length of the arc subtended by the angle to the radius of the circle. In other words, if <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>s</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is the length of an arc of a circle, and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>r</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is the radius of the circle, then the central angle containing that arc measures<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] s r  radians. In a circle of radius 1, the radian measure corresponds to the length of the arc.

A measure of 1 radian looks to be about 60°. Is that correct?

Yes. It is approximately 57.3°. Because<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]radians equals 360°, <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>1</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]radian equals<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] 360° 2π ≈57.3°.

Because radian measure is the ratio of two lengths, it is a unitless measure. For example, in [link], suppose the radius were 2 inches and the distance along the arc were also 2 inches. When we calculate the radian measure of the angle, the “inches” cancel, and we have a result without units. Therefore, it is not necessary to write the label “radians” after a radian measure, and if we see an angle that is not labeled with “degrees” or the degree symbol, we can assume that it is a radian measure.

Considering the most basic case, the unit circle (a circle with radius 1), we know that 1 rotation equals 360 degrees, 360°. We can also track one rotation around a circle by finding the circumference,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>C</mi><mo>=</mo><mn>2</mn><mi>π</mi><mi>r</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] and for the unit circle<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext>  </mtext><mi>C</mi><mo>=</mo><mn>2</mn><mi>π</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]These two different ways to rotate around a circle give us a way to convert from degrees to radians.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mn>1</mn><mtext> rotation </mtext><mo>=</mo><mn>360°</mn></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] =2π radians 1 2  rotation=180° =π radians 1 4  rotation=90° = π 2 radians

## Identifying Special Angles Measured in Radians

In addition to knowing the measurements in degrees and radians of a quarter revolution, a half revolution, and a full revolution, there are other frequently encountered angles in one revolution of a circle with which we should be familiar. It is common to encounter multiples of 30, 45, 60, and 90 degrees. These values are shown in [link]. Memorizing these angles will be very useful as we study the properties associated with angles.

<figure class="small" id="Figure_05_01_016"> <figcaption>Commonly encountered angles measured in degrees</figcaption> </figure>

Now, we can list the corresponding radian values for the common measures of a circle corresponding to those listed in [link], which are shown in [link]. Be sure you can verify each of these measures.

<figure class="small" id="Figure_05_01_017"> <figcaption>Commonly encountered angles measured in radians</figcaption> </figure>

Find the radian measure of one-third of a full rotation.

For any circle, the arc length along such a rotation would be one-third of the circumference. We know that

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>1</mn><mtext> rotation</mtext><mo>=</mo><mn>2</mn><mi>π</mi><mi>r</mi></mrow></annotation-xml></semantics>[/itex]

So,

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mtable columnalign="left"><mtr><mtd><mrow/></mtd></mtr><mtr><mtd><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mi>s</mi><mo>=</mo><mfrac/></mrow></mtd></mtr></mtable></mtd></mtr></mtable></annotation-xml></semantics>[/itex] 1 3 (2πr)   = 2πr 3

The radian measure would be the arc length divided by the radius.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext>radian measure</mtext><mo>=</mo><mfrac/></mrow></mtd></mtr></mtable></mrow></mtd></mtr></mtable></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 2πr 3 r                                      = 2πr 3r                                      = 2π 3

Find the radian measure of three-fourths of a full rotation.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>3</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 2

## Converting between Radians and Degrees

Because degrees and radians both measure angles, we need to be able to convert between them. We can easily do so using a proportion.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mi>θ</mi></mfrac></mrow></annotation-xml></semantics>[/itex] 180 = θ R π

This proportion shows that the measure of angle<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]in degrees divided by 180 equals the measure of angle<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]in radians divided by<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>π</mi><mo>. </mo></mrow></annotation-xml></semantics>[/itex]Or, phrased another way, degrees is to 180 as radians is to<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>π</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mtext>Degrees</mtext></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 180 = Radians π

To convert between degrees and radians, use the proportion

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mi>θ</mi></mfrac></mrow></annotation-xml></semantics>[/itex] 180 = θ R π

Convert each radian measure to degrees.

1. <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mi>π</mi></mfrac></mrow></annotation-xml></semantics>[/itex] 6
2. 3

Because we are given radians and we want degrees, we should set up a proportion and solve it.

1. We use the proportion, substituting the given information.
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mtable columnalign="left"><mtr><mtd><mrow/></mtd></mtr><mtr><mtd><mfrac><mi>θ</mi></mfrac></mtd></mtr></mtable></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 180 = θ R π θ 180 = π 6 π      θ= 180 6      θ= 30 ∘
2. We use the proportion, substituting the given information.
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mtable columnalign="left"><mtr><mtd><mrow/></mtd></mtr><mtr><mtd><mfrac><mi>θ</mi></mfrac></mtd></mtr></mtable></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 180 = θ R π θ 180 = 3 π      θ= 3(180) π      θ≈ 172 ∘

Convert<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo>−</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 3π 4  radians to degrees.

−135°

Convert<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>15</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]degrees to radians.

In this example, we start with degrees and want radians, so we again set up a proportion and solve it, but we substitute the given information into a different part of the proportion.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable><mtr><mtd><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow/></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mrow><mfrac><mi>θ</mi></mfrac></mrow></mtd></mtr></mtable></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 180 = θ R π 15 180 = θ R π 15π 180 = θ R   π 12 = θ R
Analysis

Another way to think about this problem is by remembering that<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] 30 ∘ = π 6 .  Because<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] 15 ∘ = 1 2 ( 30 ∘ ),we can find that<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] 1 2 ( π 6 ) is<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] π 12 .

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] 7π 10

# Finding Coterminal Angles

Converting between degrees and radians can make working with angles easier in some applications. For other applications, we may need another type of conversion. Negative angles and angles greater than a full revolution are more awkward to work with than those in the range of 0° to 360°, or 0 to <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]It would be convenient to replace those out-of-range angles with a corresponding angle within the range of a single revolution.

It is possible for more than one angle to have the same terminal side. Look at [link]. The angle of 140° is a positive angle, measured counterclockwise. The angle of –220° is a negative angle, measured clockwise. But both angles have the same terminal side. If two angles in standard position have the same terminal side, they are coterminal angles. Every angle greater than 360° or less than 0° is coterminal with an angle between 0° and 360°, and it is often more convenient to find the coterminal angle within the range of 0° to 360° than to work with an angle that is outside that range.

<figure class="small" id="Figure_05_01_020"> <figcaption>An angle of 140° and an angle of –220° are coterminal angles.</figcaption> </figure>

Any angle has infinitely many coterminal angles because each time we add 360° to that angle—or subtract 360° from it—the resulting value has a terminal side in the same location. For example, 100° and 460° are coterminal for this reason, as is −260°. Recognizing that any angle has infinitely many coterminal angles explains the repetitive shape in the graphs of trigonometric functions.

An angle’s reference angle is the measure of the smallest, positive, acute angle<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]formed by the terminal side of the angle<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and the horizontal axis. Thus positive reference angles have terminal sides that lie in the first quadrant and can be used as models for angles in other quadrants. See [link] for examples of reference angles for angles in different quadrants.

<figure id="Figure_05_01_019"></figure>
Coterminal and Reference Angles

Coterminal angles are two angles in standard position that have the same terminal side.

An angle’s reference angle is the size of the smallest acute angle,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><msup/></mrow></annotation-xml></semantics>[/itex] t ′ ,formed by the terminal side of the angle<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex] and the horizontal axis.

Given an angle greater than 360°, find a coterminal angle between 0° and 360°.

1. Subtract 360° from the given angle.
2. If the result is still greater than 360°, subtract 360° again till the result is between 0° and 360°.
3. The resulting angle is coterminal with the original angle.
Finding an Angle Coterminal with an Angle of Measure Greater Than 360°

Find the least positive angle <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mi>θ</mi></annotation-xml></semantics>[/itex] that is coterminal with an angle measuring 800°, where <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>0°</mn><mo>≤</mo><mi>θ</mi><mo><</mo><mn>360°</mn><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

An angle with measure 800° is coterminal with an angle with measure 800 − 360 = 440°, but 440° is still greater than 360°, so we subtract 360° again to find another coterminal angle: 440 − 360 = 80°.

The angle<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mo>=</mo><mn>80°</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is coterminal with 800°. To put it another way, 800° equals 80° plus two full rotations, as shown in [link].

<figure class="small" id="Figure_05_01_021"></figure>

Find an angle<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>α</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]that is coterminal with an angle measuring 870°, where <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>0°</mn><mo>≤</mo><mi>α</mi><mo><</mo><mn>360°</mn><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>α</mi><mo>=</mo><mn>150</mn><mo>°</mo></mrow></annotation-xml></semantics>[/itex]

Given an angle with measure less than 0°, find a coterminal angle having a measure between 0° and 360°.

1. Add 360° to the given angle.
2. If the result is still less than 0°, add 360° again until the result is between 0° and 360°.
3. The resulting angle is coterminal with the original angle.
Finding an Angle Coterminal with an Angle Measuring Less Than 0°

Show the angle with measure −45° on a circle and find a positive coterminal angle <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>α</mi></mrow></annotation-xml></semantics>[/itex] such that 0° ≤ α < 360°.

Since 45° is half of 90°, we can start at the positive horizontal axis and measure clockwise half of a 90° angle.

Because we can find coterminal angles by adding or subtracting a full rotation of 360°, we can find a positive coterminal angle here by adding 360°:

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo>−</mo><mn>45°</mn><mo>+</mo><mn>360°</mn><mo>=</mo><mn>315°</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]

We can then show the angle on a circle, as in [link].

<figure class="small" id="Figure_05_01_022"></figure>

Find an angle<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>β</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]that is coterminal with an angle measuring −300° such that<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>0°</mn><mo>≤</mo><mi>β</mi><mo><</mo><mn>360°</mn><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>β</mi><mo>=</mo><mn>60</mn><mo>°</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]

## Finding Coterminal Angles Measured in Radians

We can find coterminal angles measured in radians in much the same way as we have found them using degrees. In both cases, we find coterminal angles by adding or subtracting one or more full rotations.

Given an angle greater than <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] find a coterminal angle between 0 and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

1. Subtract<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]from the given angle.
2. If the result is still greater than<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] subtract<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]again until the result is between<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>0</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]
3. The resulting angle is coterminal with the original angle.

Find an angle<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>β</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]that is coterminal with<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] 19π 4 , where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>0</mn><mo>≤</mo><mi>β</mi><mo><</mo><mn>2</mn><mi>π</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

When working in degrees, we found coterminal angles by adding or subtracting 360 degrees, a full rotation. Likewise, in radians, we can find coterminal angles by adding or subtracting full rotations of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext>  </mtext><mn>2</mn><mi>π</mi><mtext>  </mtext></mrow></annotation-xml></semantics>[/itex]radians:

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mfrac><mrow><mn>19</mn><mi>π</mi></mrow></mfrac></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 4 −2π= 19π 4 − 8π 4                         = 11π 4

The angle<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] 11π 4  is coterminal, but not less than<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] so we subtract another rotation:

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mfrac><mrow><mn>11</mn><mi>π</mi></mrow></mfrac></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 4 −2π= 11π 4 − 8π 4                         = 3π 4

The angle<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] 3π 4  is coterminal with<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] 19π 4 , as shown in [link].

<figure class="small" id="Figure_05_01_023"></figure>

Find an angle of measure<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]that is coterminal with an angle of measure<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mo>−</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 17π 6  where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>0</mn><mo>≤</mo><mi>θ</mi><mo><</mo><mn>2</mn><mi>π</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] 7π 6

# Determining the Length of an Arc

Recall that the radian measure<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]of an angle was defined as the ratio of the arc length<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>s</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]of a circular arc to the radius<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>r</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]of the circle,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] s r . From this relationship, we can find arc length along a circle, given an angle.

Arc Length on a Circle

In a circle of radius r, the length of an arc<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>s</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]subtended by an angle with measure<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]in radians, shown in [link], is

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>s</mi><mo>=</mo><mi>r</mi><mi>θ</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]
<figure class="small" id="Figure_05_01_024"></figure>

Given a circle of radius <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>r</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] calculate the length <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>s</mi></mrow></annotation-xml></semantics>[/itex] of the arc subtended by a given angle of measure <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>θ</mi><mo>.</mo></mrow></annotation-xml></semantics>[/itex]

1. If necessary, convert<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]to radians.
2. Multiply the radius<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>r</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]by the radian measure of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mo>:</mo><mi>s</mi><mo>=</mo><mi>r</mi><mi>θ</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]
Finding the Length of an Arc

Assume the orbit of Mercury around the sun is a perfect circle. Mercury is approximately 36 million miles from the sun.

1. In one Earth day, Mercury completes 0.0114 of its total revolution. How many miles does it travel in one day?
2. Use your answer from part (a) to determine the radian measure for Mercury’s movement in one Earth day.
1. Let’s begin by finding the circumference of Mercury’s orbit.
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mi>C</mi><mo>=</mo><mn>2</mn><mi>π</mi><mi>r</mi></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex]     =2π(36 million miles)     ≈226 million miles

Since Mercury completes 0.0114 of its total revolution in one Earth day, we can now find the distance traveled:

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 0.0114 )226 million miles = 2.58 million miles
2. Now, we convert to radians:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext>radian</mtext><mo>=</mo><mfrac/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] arclength radius                = 2.58 million miles 36 million miles                =0.0717

Find the arc length along a circle of radius 10 units subtended by an angle of 215°.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] 215π 18 =37.525 units

# Finding the Area of a Sector of a Circle

In addition to arc length, we can also use angles to find the area of a sector of a circle. A sector is a region of a circle bounded by two radii and the intercepted arc, like a slice of pizza or pie. Recall that the area of a circle with radius<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>r</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]can be found using the formula<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>A</mi><mo>=</mo><mi>π</mi><msup/></mrow></annotation-xml></semantics>[/itex] r 2 . If the two radii form an angle of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex]measured in radians, then<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] θ 2π  is the ratio of the angle measure to the measure of a full rotation and is also, therefore, the ratio of the area of the sector to the area of the circle. Thus, the area of a sector is the fraction<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] θ 2π   multiplied by the entire area. (Always remember that this formula only applies if<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is in radians.)

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext>Area of sector</mtext><mo>=</mo><mrow><mo>(</mo></mrow></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] θ 2π )π r 2                                   = θπ r 2 2π                                   = 1 2 θ r 2
Area of a Sector

The area of a sector of a circle with radius<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>r</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]subtended by an angle<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] measured in radians, is

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>A</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 1 2 θ r 2

<figure class="small" id="Figure_05_01_026"> <figcaption>The area of the sector equals half the square of the radius times the central angle measured in radians.</figcaption> </figure>

Given a circle of radius<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>r</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] find the area of a sector defined by a given angle<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]

1. If necessary, convert<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]to radians.
2. Multiply half the radian measure of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]by the square of the radius<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>r</mi><mo>:</mo><mtext>​</mtext><mo> </mo><mi>A</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 1 2 θ r 2 .
Finding the Area of a Sector

An automatic lawn sprinkler sprays a distance of 20 feet while rotating 30 degrees, as shown in [link]. What is the area of the sector of grass the sprinkler waters?

<figure class="small" id="Figure_05_01_027"> <figcaption>The sprinkler sprays 20 ft within an arc of 30°.</figcaption> </figure>

First, we need to convert the angle measure into radians. Because 30 degrees is one of our special angles, we already know the equivalent radian measure, but we can also convert:

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mn>30</mn><mtext> degrees</mtext><mo>=</mo><mn>30</mn><mo>⋅</mo><mfrac/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] π 180                           = π 6  radians

The area of the sector is then

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mtext>Area = </mtext><mfrac/></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 1 2 ( π 6 ) (20) 2         ≈104.72

So the area is about<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>104.72</mn><msup/></mrow></annotation-xml></semantics>[/itex]  ft 2 .

In central pivot irrigation, a large irrigation pipe on wheels rotates around a center point. A farmer has a central pivot system with a radius of 400 meters. If water restrictions only allow her to water 150 thousand square meters a day, what angle should she set the system to cover? Write the answer in radian measure to two decimal places.

1.88

# Use Linear and Angular Speed to Describe Motion on a Circular Path

In addition to finding the area of a sector, we can use angles to describe the speed of a moving object. An object traveling in a circular path has two types of speed. Linear speed is speed along a straight path and can be determined by the distance it moves along (its displacement) in a given time interval. For instance, if a wheel with radius 5 inches rotates once a second, a point on the edge of the wheel moves a distance equal to the circumference, or<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>10</mn><mi>π</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]inches, every second. So the linear speed of the point is<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>10</mn><mi>π</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]in./s. The equation for linear speed is as follows where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>v</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is linear speed,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>s</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is displacement, and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex] is time.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>v</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] s t

Angular speed results from circular motion and can be determined by the angle through which a point rotates in a given time interval. In other words, angular speed is angular rotation per unit time. So, for instance, if a gear makes a full rotation every 4 seconds, we can calculate its angular speed as<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] 360 degrees 4 seconds = 90 degrees per second. Angular speed can be given in radians per second, rotations per minute, or degrees per hour for example. The equation for angular speed is as follows, where<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>ω</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex](read as omega) is angular speed,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is the angle traversed, and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]is time.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>ω</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] θ t

Combining the definition of angular speed with the arc length equation,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>s</mi><mo>=</mo><mi>r</mi><mi>θ</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] we can find a relationship between angular and linear speeds. The angular speed equation can be solved for<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] giving<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>θ</mi><mo>=</mo><mi>ω</mi><mi>t</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]Substituting this into the arc length equation gives:

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mrow><mi>s</mi><mo>=</mo><mi>r</mi><mi>θ</mi></mrow></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex]   =rωt

Substituting this into the linear speed equation gives:

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mtable columnalign="left"><mtr><mtd><mrow/></mtd></mtr><mtr><mtd><mi>v</mi><mo>=</mo><mfrac/></mtd></mtr></mtable></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] s t   = rωt t   =rω
Angular and Linear Speed

As a point moves along a circle of radius<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>r</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] its angular speed,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>ω</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] is the angular rotation<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext>  </mtext><mi>θ</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]per unit time,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>ω</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] θ t

The linear speed.<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>v</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] of the point can be found as the distance traveled, arc length<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>s</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] per unit time,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>t</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>v</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] s t

When the angular speed is measured in radians per unit time, linear speed and angular speed are related by the equation

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>v</mi><mo>=</mo><mi>r</mi><mi>ω</mi></mrow></annotation-xml></semantics>[/itex]

This equation states that the angular speed in radians,<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>ω</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] representing the amount of rotation occurring in a unit of time, can be multiplied by the radius<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>r</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]to calculate the total arc length traveled in a unit of time, which is the definition of linear speed.

Given the amount of angle rotation and the time elapsed, calculate the angular speed.

1. If necessary, convert the angle measure to radians.
2. Divide the angle in radians by the number of time units elapsed: <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>ω</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] θ t.
3. The resulting speed will be in radians per time unit.
Finding Angular Speed

A water wheel, shown in [link], completes 1 rotation every 5 seconds. Find the angular speed in radians per second.

<figure class="small" id="Figure_05_01_028"></figure>

The wheel completes 1 rotation, or passes through an angle of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex] radians in 5 seconds, so the angular speed would be<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>ω</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 2π 5 ≈1.257  radians per second.

An old vinyl record is played on a turntable rotating clockwise at a rate of 45 rotations per minute. Find the angular speed in radians per second.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mo>−</mo><mn>3</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 2 rad/s

Given the radius of a circle, an angle of rotation, and a length of elapsed time, determine the linear speed.

1. Convert the total rotation to radians if necessary.
2. Divide the total rotation in radians by the elapsed time to find the angular speed: apply<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>ω</mi><mo>=</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] θ t .
3. Multiply the angular speed by the length of the radius to find the linear speed, expressed in terms of the length unit used for the radius and the time unit used for the elapsed time: apply<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>v</mi><mo>=</mo><mi>r</mi><mi>ω.</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]
Finding a Linear Speed

A bicycle has wheels 28 inches in diameter. A tachometer determines the wheels are rotating at 180 RPM (revolutions per minute). Find the speed the bicycle is traveling down the road.

Here, we have an angular speed and need to find the corresponding linear speed, since the linear speed of the outside of the tires is the speed at which the bicycle travels down the road.

We begin by converting from rotations per minute to radians per minute. It can be helpful to utilize the units to make this conversion:

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>180</mn><mfrac/></mrow></annotation-xml></semantics>[/itex] rotations minute ⋅ 2π radians rotation =360π radians minute

Using the formula from above along with the radius of the wheels, we can find the linear speed:

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mtable columnalign="left"><mtr><mtd><mrow/></mtd></mtr><mtr><mtd><mi>v</mi><mo>=</mo><mo stretchy="false">(</mo><mn>14</mn><mtext> </mtext><mtext>inches</mtext><mo stretchy="false">)</mo><mrow><mo>(</mo></mrow></mtd></mtr></mtable></mtd></mtr></mtable></mrow></annotation-xml></semantics>[/itex] 360π radians minute )    =5040π inches minute

Remember that radians are a unitless measure, so it is not necessary to include them.

Finally, we may wish to convert this linear speed into a more familiar measurement, like miles per hour.

<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>5040</mn><mi>π</mi><mfrac/></mrow></annotation-xml></semantics>[/itex] inches minute ⋅ 1  feet 12  inches ⋅ 1 mile 5280  feet ⋅ 60  minutes 1 hour ≈14.99 miles per hour (mph)

A satellite is rotating around Earth at 0.25 radians per hour at an altitude of 242 km above Earth. If the radius of Earth is 6378 kilometers, find the linear speed of the satellite in kilometers per hour.

1655 kilometers per hour

Access these online resources for additional instruction and practice with angles, arc length, and areas of sectors.

# Key Equations

 arc length s=rθ[/itex] area of a sector A=[/itex] 1 2 θ r 2 angular speed ω=[/itex] θ t linear speed v=[/itex] s t linear speed related to angular speed v=rω[/itex]

# Key Concepts

• An angle is formed from the union of two rays, by keeping the initial side fixed and rotating the terminal side. The amount of rotation determines the measure of the angle.
• An angle is in standard position if its vertex is at the origin and its initial side lies along the positive x-axis. A positive angle is measured counterclockwise from the initial side and a negative angle is measured clockwise.
• To draw an angle in standard position, draw the initial side along the positive x-axis and then place the terminal side according to the fraction of a full rotation the angle represents. See [link].
• In addition to degrees, the measure of an angle can be described in radians. See [link].
• To convert between degrees and radians, use the proportion<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] θ 180 = θ R π . See [link] and [link].
• Two angles that have the same terminal side are called coterminal angles.
• We can find coterminal angles by adding or subtracting 360° or<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mo>.</mo><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]See [link] and [link].
• Coterminal angles can be found using radians just as they are for degrees. See [link].
• The length of a circular arc is a fraction of the circumference of the entire circle. See [link].
• The area of sector is a fraction of the area of the entire circle. See [link].
• An object moving in a circular path has both linear and angular speed.
• The angular speed of an object traveling in a circular path is the measure of the angle through which it turns in a unit of time. See [link].
• The linear speed of an object traveling along a circular path is the distance it travels in a unit of time. See [link].

# Section Exercises

## Verbal

Draw an angle in standard position. Label the vertex, initial side, and terminal side.

Explain why there are an infinite number of angles that are coterminal to a certain angle.

State what a positive or negative angle signifies, and explain how to draw each.

Whether the angle is positive or negative determines the direction. A positive angle is drawn in the counterclockwise direction, and a negative angle is drawn in the clockwise direction.

How does radian measure of an angle compare to the degree measure? Include an explanation of 1 radian in your paragraph.

Explain the differences between linear speed and angular speed when describing motion along a circular path.

Linear speed is a measurement found by calculating distance of an arc compared to time. Angular speed is a measurement found by calculating the angle of an arc compared to time.

## Graphical

For the following exercises, draw an angle in standard position with the given measure.

30°

300°

−80°

135°

−150°

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>2</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 3

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>7</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 4

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>5</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 6

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mi>π</mi></mfrac></mrow></annotation-xml></semantics>[/itex] 2

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] π 10

415°

−120°

240°

−315°

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>22</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 3

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>4</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 3

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] π 6

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 4π 3

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>2</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 3

For the following exercises, refer to [link]. Round to two decimal places.

<figure class="small" id="Figure_05_01_218"></figure>

Find the arc length.

Find the area of the sector.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>7</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 2 ≈11.00  in 2

For the following exercises, refer to [link]. Round to two decimal places.

<figure class="small" id="Figure_05_01_219"></figure>

Find the arc length.

Find the area of the sector.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>81</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 20 ≈12.72  cm 2

## Algebraic

For the following exercises, convert angles in radians to degrees.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mi>π</mi></mfrac></mrow></annotation-xml></semantics>[/itex] 9  radians

20°

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mi> </mi><mfrac><mrow><mn>5</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 4radians

60°

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 7π 3radians

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] 5π 12radians

−75°

For the following exercises, convert angles in degrees to radians.

90°

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mi>π</mi></mfrac></mrow></annotation-xml></semantics>[/itex] 2  radians

100°

−540°

−120°

180°

−315°

150°

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>5</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 6  radians

For the following exercises, use to given information to find the length of a circular arc. Round to two decimal places.

Find the length of the arc of a circle of radius 12 inches subtended by a central angle of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] π 4  radians.

Find the length of the arc of a circle of radius 5.02 miles subtended by the central angle of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] π 3 .

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>5.02</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 3 ≈5.26miles

Find the length of the arc of a circle of diameter 14 meters subtended by the central angle of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>5</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 6 .

Find the length of the arc of a circle of radius 10 centimeters subtended by the central angle of 50°.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>25</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 9 ≈8.73 centimeters

Find the length of the arc of a circle of radius 5 inches subtended by the central angle of 220°.

Find the length of the arc of a circle of diameter 12 meters subtended by the central angle is 63°.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>21</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 10 ≈6.60  meters

For the following exercises, use the given information to find the area of the sector. Round to four decimal places.

A sector of a circle has a central angle of 45° and a radius 6 cm.

A sector of a circle has a central angle of 30° and a radius of 20 cm.

104.7198 cm2

A sector of a circle with diameter 10 feet and an angle of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] π 2  radians.

A sector of a circle with radius of 0.7 inches and an angle of<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>π</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]radians.

0.7697 in2

For the following exercises, find the angle between 0° and 360° that is coterminal to the given angle.

−40°

−110°

250°

700°

1400°

320°

For the following exercises, find the angle between 0 and<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>2</mn><mi>π</mi><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]in radians that is coterminal to the given angle.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mo>−</mo><mfrac/></mrow></annotation-xml></semantics>[/itex] π 9

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>10</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 3

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>4</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 3

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>13</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 6

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>44</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 9

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mfrac><mrow><mn>8</mn><mi>π</mi></mrow></mfrac></mrow></annotation-xml></semantics>[/itex] 9

## Real-World Applications

A truck with 32-inch diameter wheels is traveling at 60 mi/h. Find the angular speed of the wheels in rad/min. How many revolutions per minute do the wheels make?

A bicycle with 24-inch diameter wheels is traveling at 15 mi/h. Find the angular speed of the wheels in rad/min. How many revolutions per minute do the wheels make?

A wheel of radius 8 inches is rotating 15°/s. What is the linear speed<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mi>v</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] the angular speed in RPM, and the angular speed in rad/s?

A wheel of radius 14 inches is rotating 0.5 rad/s. What is the linear speed <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mi>v</mi><mo>,</mo></mrow></annotation-xml></semantics>[/itex] the angular speed in RPM, and the angular speed in deg/s?

7 in./s, 4.77 RPM, 28.65 deg/s

A CD has diameter of 120 millimeters. When playing audio, the angular speed varies to keep the linear speed constant where the disc is being read. When reading along the outer edge of the disc, the angular speed is about 200 RPM (revolutions per minute). Find the linear speed.

When being burned in a writable CD-R drive, the angular speed of a CD is often much faster than when playing audio, but the angular speed still varies to keep the linear speed constant where the disc is being written. When writing along the outer edge of the disc, the angular speed of one drive is about 4800 RPM (revolutions per minute). Find the linear speed if the CD has diameter of 120 millimeters.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>1</mn><mo>,</mo><mn>809</mn><mo>,</mo><mn>557.37</mn><mtext> mm/min</mtext><mo>=</mo><mn>30.16</mn><mtext> m/s</mtext></mrow></annotation-xml></semantics>[/itex]

A person is standing on the equator of Earth (radius 3960 miles). What are his linear and angular speeds?

Find the distance along an arc on the surface of Earth that subtends a central angle of 5 minutes <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 1 minute= 1 60  degree ). The radius of Earth is 3960 miles.

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>5.76</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex] miles

Find the distance along an arc on the surface of Earth that subtends a central angle of 7 minutes<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mrow><mo>(</mo></mrow></mrow></annotation-xml></semantics>[/itex] 1 minute= 1 60  degree ). The radius of Earth is <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>3960</mn></mrow></annotation-xml></semantics>[/itex]miles.

Consider a clock with an hour hand and minute hand. What is the measure of the angle the minute hand traces in <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mn>20</mn><mtext> </mtext></mrow></annotation-xml></semantics>[/itex]minutes?

<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mn>120</mn><mo>°</mo></mrow></annotation-xml></semantics>[/itex]

## Extensions

Two cities have the same longitude. The latitude of city A is 9.00 degrees north and the latitude of city B is 30.00 degree north. Assume the radius of the earth is 3960 miles. Find the distance between the two cities.

A city is located at 40 degrees north latitude. Assume the radius of the earth is 3960 miles and the earth rotates once every 24 hours. Find the linear speed of a person who resides in this city.

794 miles per hour

A city is located at 75 degrees north latitude. Assume the radius of the earth is 3960 miles and the earth rotates once every 24 hours. Find the linear speed of a person who resides in this city.

Find the linear speed of the moon if the average distance between the earth and moon is 239,000 miles, assuming the orbit of the moon is circular and requires about 28 days. Express answer in miles per hour.

2,234 miles per hour

A bicycle has wheels 28 inches in diameter. A tachometer determines that the wheels are rotating at 180 RPM (revolutions per minute). Find the speed the bicycle is travelling down the road.

A car travels 3 miles. Its tires make 2640 revolutions. What is the radius of a tire in inches?

11.5 inches

A wheel on a tractor has a 24-inch diameter. How many revolutions does the wheel make if the tractor travels 4 miles?

## Glossary

angle
the union of two rays having a common endpoint
angular speed
the angle through which a rotating object travels in a unit of time
arc length
the length of the curve formed by an arc
area of a sector
area of a portion of a circle bordered by two radii and the intercepted arc; the fraction<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><annotation-xml encoding="MathML-Content"><mrow><mtext> </mtext><mfrac/></mrow></annotation-xml></semantics>[/itex] θ 2π  multiplied by the area of the entire circle
coterminal angles
description of positive and negative angles in standard position sharing the same terminal side
degree
a unit of measure describing the size of an angle as one-360th of a full revolution of a circle
initial side
the side of an angle from which rotation begins
linear speed
the distance along a straight path a rotating object travels in a unit of time; determined by the arc length
measure of an angle
the amount of rotation from the initial side to the terminal side
negative angle
description of an angle measured clockwise from the positive x-axis
positive angle
description of an angle measured counterclockwise from the positive x-axis
an angle whose terminal side lies on an axis