<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>5.C: Surface Area</title>
<meta name="identifier" content="i16448f4ba06e8179bf8bf51667d60ed2"/>
<meta name="editing_roles" content="teachers"/>
<meta name="workflow_state" content="active"/>
</head>
<body>
<div id="HS21">
<div class="overview">
<h2>Overview</h2>
<p>The purpose of this lesson is to learn how to find the surface area of a solid.</p>
<p>This lesson will address the following CCRS Standard(s) for Geometry:</p>
<ul>
<li><em>7.G.6: Solve real-world and mathematical problems involving area, volume and surface area of two- and three- dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms</em></li>
</ul>
</div>
<div class="directions">
<h2>Directions</h2>
<ol>
<li>Take notes while watching videos below</li>
<li>Go to <a class="external" href="http://wamap.org/" target="_blank">http://wamap.org</a> and log into our course to complete assignment 5.B with 80% or better.</li>
</ol>
</div>
<h3>Watch</h3>
<p><a class="" href="https://youtu.be/oU0ixLV-3WI">Surface Area [9:38]</a></p>
<h3>Do</h3>
<p>Complete assignment 5.B with 80% or better at <a href="http://wamap.org">http://wamap.org</a></p>
<div class="summary">
<h2>Summary</h2>
<p>In this lesson we have learned:</p>
<ul>
<li>If P is the perimeter of the base of a prism (or circumference of the base of a cylinder), and B is the area of the base, then the surface area of the prism (or cylinder) is <img class="equation_image" title="A=2B+Pl" src="https://sbctc.instructure.com/equation_images/A%253D2B%2BPl" alt="LaTeX: A=2B+Pl" data-mathml='&lt;math xmlns="http://www.w3.org/1998/Math/MathML"&gt;
  &lt;mi&gt;A&lt;/mi&gt;
  &lt;mo&gt;=&lt;/mo&gt;
  &lt;mn&gt;2&lt;/mn&gt;
  &lt;mi&gt;B&lt;/mi&gt;
  &lt;mo&gt;+&lt;/mo&gt;
  &lt;mi&gt;P&lt;/mi&gt;
  &lt;mi&gt;l&lt;/mi&gt;
&lt;/math&gt;' data-equation-content="A=2B+Pl"> (where l is the slant height)</li>
<li>If P is the perimeter of the base of a pyramid (or circumference of the base of a cone), and B is the area of the base, then the surface area of the pyramid (or cone) is <img class="equation_image" title="A=B+\frac{1}{2}Pl" src="https://sbctc.instructure.com/equation_images/A%253DB%2B%255Cfrac%257B1%257D%257B2%257DPl" alt="LaTeX: A=B+\frac{1}{2}Pl" data-mathml='&lt;math xmlns="http://www.w3.org/1998/Math/MathML"&gt;
  &lt;mi&gt;A&lt;/mi&gt;
  &lt;mo&gt;=&lt;/mo&gt;
  &lt;mi&gt;B&lt;/mi&gt;
  &lt;mo&gt;+&lt;/mo&gt;
  &lt;mfrac&gt;
    &lt;mn&gt;1&lt;/mn&gt;
    &lt;mn&gt;2&lt;/mn&gt;
  &lt;/mfrac&gt;
  &lt;mi&gt;P&lt;/mi&gt;
  &lt;mi&gt;l&lt;/mi&gt;
&lt;/math&gt;' data-equation-content="A=B+\frac{1}{2}Pl"> (where l is the slant height)</li>
<li>The surface area of a sphere is <img class="equation_image" title="A=4\pi r^2" src="https://sbctc.instructure.com/equation_images/A%253D4%255Cpi%2520r%255E2" alt="LaTeX: A=4\pi r^2" data-mathml='&lt;math xmlns="http://www.w3.org/1998/Math/MathML"&gt;
  &lt;mi&gt;A&lt;/mi&gt;
  &lt;mo&gt;=&lt;/mo&gt;
  &lt;mn&gt;4&lt;/mn&gt;
  &lt;mi&gt;&amp;#x03C0;<!-- π -->&lt;/mi&gt;
  &lt;msup&gt;
    &lt;mi&gt;r&lt;/mi&gt;
    &lt;mn&gt;2&lt;/mn&gt;
  &lt;/msup&gt;
&lt;/math&gt;' data-equation-content="A=4\pi r^2">
</li>
</ul>
</div>
</div>
</body>
</html>