Table of Contents

Mathematical Reasoning: Writing and Proof is designed to be a text for the first course in the college mathematics curriculum that introduces students to the processes of constructing and writing proofs and focuses on the formal development of mathematics.

- **1: Introduction to Writing Proofs in Mathematics**
 - 1.1: Statements and Conditional Statements
 - 1.2: Constructing Direct Proofs
 - 1.S: Introduction to Writing Proofs in Mathematics (Summary)

- **2: Logical Reasoning**
 - 2.1: Statements and Logical Operators
 - 2.2: Logically Equivalent Statements
 - 2.3: Open Sentences and Sets
 - 2.4: Quantifiers and Negations
 - 2.S: Logical Reasoning (Summary)

- **3: Constructing and Writing Proofs in Mathematics**

 A proof in mathematics is a convincing argument that some mathematical statement is true. A proof should contain enough mathematical detail to be convincing to the person(s) to whom the proof is addressed. In essence, a proof is an argument that communicates a mathematical truth to another person (who has the appropriate mathematical
A proof must use correct, logical reasoning and be based on previously established results.

3.1: Direct Proofs
3.2: More Methods of Proof
3.3: Proof by Contradiction
3.4: Using Cases in Proofs
3.5: The Division Algorithm and Congruence
3.6: Review of Proof Methods
3.7: Constructing and Writing Proofs in Mathematics (Summary)

4: Mathematical Induction
Mathematical induction is a mathematical proof technique that is used to prove that a property $P(n)$ holds for every natural number n, i.e. for $n = 0, 1, 2, 3$, and so on.

4.1: The Principle of Mathematical Induction
4.2: Other Forms of Mathematical Induction
4.3: Induction and Recursion
4.4: Mathematical Induction (Summary)

5: Set Theory
5.1: Sets and Operations on Sets
5.2: Proving Set Relationships
5.3: Properties of Set Operations
5.4: Cartesian Products
5.5: Indexed Families of Sets
5.6: Set Theory (Summary)

6: Functions
6.1: Introduction to Functions
6.2: More about Functions
6.3: Injections, Surjections, and Bijections
6.4: Composition of Functions
6.5: Inverse Functions
6.6: Functions Acting on Sets
6.7: Functions (Summary)