Recall from linear algebra that two vectors \(\langle v \rangle \) and \(\langle w \rangle \) are called linearly dependent if there are nonzero constants \(c_1 \) and \(c_2 \) with
\[
 c_1v + c_2w = 0.
\]

We can think of differentiable functions \(\langle f(t) \rangle \) and \(\langle g(t) \rangle \) as being vectors in the vector space of differentiable functions. The analogous definition is below.

Definition: Linear Dependence and Independence

Let \(f(t) \) and \(g(t) \) be differentiable functions. Then they are called *linearly dependent* if there are nonzero constants \(c_1 \) and \(c_2 \) with
\[
 c_1f(t) + c_2g(t) = 0
\]
for all \(t \). Otherwise they are called *linearly independent*.

Example

The functions \(f(t) = 2\sin^2 t \) and \(g(t) = 1 - \cos^2(t) \) are linearly dependent since
\[
 (1)(2\sin^2 t) + (-2)(1 - \cos^2(t)) = 0.
\]

Example

The functions \(f(t) = t \) and \(g(t) = t^2 \) are linearly independent since otherwise there would be nonzero constants \(c_1 \) and \(c_2 \) such that
\[
 c_1t + c_2t^2 = 0
\]
for all values of \(t \). First let \(t = 1 \). Then
\[
\begin{align*}
\text{c}_1 + \text{c}_2 &= 0. \\
\text{c}_1 + 2\text{c}_2 &= 0
\end{align*}
\]
Now let \(t = 2 \). Then
\[
\begin{align*}
2\text{c}_1 + 4\text{c}_2 &= 0
\end{align*}
\]
This is a system of 2 equations and two unknowns. The determinant of the corresponding matrix is
\[
\begin{align*}
4 - 2 &= 2
\end{align*}
\]
Since the determinant is nonzero, the only solution is the trivial solution. That is
\[
\begin{align*}
\text{c}_1 = \text{c}_2 = 0
\end{align*}
\]
The two functions are linearly independent.

In the above example, we arbitrarily selected two values for \(t \). It turns out that there is a systematic way to check for linear dependence. The following theorem states this way.

Theorem

Let \(f \) and \(g \) be differentiable on \([a,b] \). If Wronskian \(W(f,g)(t_0) \) is nonzero for some \(t_0 \) in \([a,b] \) then \(f \) and \(g \) are linearly independent on \([a,b] \). If \(f \) and \(g \) are linearly dependent then the Wronskian is zero for all \(t \) in \([a,b] \).

Example \(\PageIndex{3} \)

Show that the functions \(f(t) = t \) and \(g(t) = e^{2t} \) are linearly independent.

Solution

We compute the Wronskian.
\[
\begin{align*}
\text{f}'(t) &= 1 \\
\text{g}'(t) &= 2e^{2t}
\end{align*}
\]
The Wronskian is
\[
\begin{align*}
\text{W}(f, g)(t) &= (t)(2e^{2t}) - (e^{2t})(1)
\end{align*}
\]
Now plug in \(t=0 \) to get
\[
\text{W}(f, g)(0) = -1
\]
which is nonzero. We can conclude that \(f \) and \(g \) are linearly independent.
Proof

If

\[
C_1 f(t) + C_2 g(t) = 0
\]

Then we can take derivatives of both sides to get

\[
C_1 f'(t) + C_2 g'(t) = 0
\]

This is a system of two equations with two unknowns. The determinant of the corresponding matrix is the Wronskian. Hence, if the Wronskian is nonzero at some \(t_0 \), only the trivial solution exists. Hence they are linearly independent.

\(\square \)

There is a fascinating relationship between second order linear differential equations and the Wronskian. This relationship is stated below.

Theorem: Abel's Theorem

Let \(y_1 \) and \(y_2 \) be solutions on the differential equation

\[
L(y) = y'' + p(t)y' + q(t)y = 0
\]

where \(p \) and \(q \) are continuous on \([a,b]\). Then the Wronskian is given by

\[
W(y_1, y_2)(t) = ce^{-\int p(t) \, dt}
\]

where \(c \) is a constant depending on only \(y_1 \) and \(y_2 \), but not on \(t \). The Wronskian is either zero for all \(t \) in \([a,b]\) or not in \([a,b]\).

Proof

First the Wronskian

\[
W = y_1 y_2' - y_1'y_2
\]

has derivative

\[
W' = y_1 y_2'' + y_1'y_2'' - y_1 y_2'' = y_1 y_2'' + y_1 y_2'' - y_1 y_2'' - y_1 y_2'' = y_1 y_2'' - y_1 y_2''.
\]

Since \(y_1 \) and \(y_2 \) are solutions to the differential equation, we have

\[
y_1'' + p(t)y_1' + q(t)y_1 = 0
\]

\[
y_2'' + p(t)y_2' + q(t)y_2 = 0
\]
Multiplying the first equation by \(-y_2\) and the second by \(y_1\) and adding gives

\[
(y_1y''_2 - y''_1y_2) + p(t)(y_1y'_2 - y_1y_2) = 0. \nonumber
\]

This can be written as

\[
W' + p(t)W = 0. \nonumber
\]

This is a separable differential equation with

\[
\frac{dW}{W} = -p(t) \, dt. \nonumber
\]

Now integrate and Abel's theorem appears.

\(\square\)

Example \(\PageIndex{4}\)

Find the Wronskian (up to a constant) of the differential equations

\[
y'' + \cos(t) \, y = 0. \nonumber
\]

Solution

We just use Abel's theorem, the integral of \(\cos t\) is \(\sin t\) hence the Wronskian is

\[
W(t) = ce^{\sin t}. \nonumber
\]

A corollary of Abel's theorem is the following

Corollary

Let \(\ y_1\) and \(\ y_2\) be solutions to the differential equation

\[
L(y) = y'' + p(t)y' + q(t)y = 0 \]

Then either \(W(y_1, y_2)\) is zero for all \(t\) or never zero.

Example \(\PageIndex{5}\)

Prove that

\[
y_1(t) = 1 - t \quad \text{and} \quad y_2(t) = t^3
\]

cannot both be solutions to a differential equation.
\[y'' + p(t)y + q(t) = 0 \]

for \(p(t) \) and \(q(t) \) continuous on \(\left[-1, 5\right] \).

Solution

We compute the Wronskian

\[
y'_1 = -1 \quad \text{and} \quad y'_2 = 3t^2
\]

\[
W(y_1, y_2) = (1 - t)(3t^2) - (t^3)(-1) = 3t^2 - 2t^3.
\]

Notice that the Wronskian is zero at \(t = 0 \) but nonzero at \(t = 1 \). By the above corollary, \(y_1 \) and \(y_2 \) cannot both be solutions.

Contributors and Attributions

- Larry Green ([Lake Tahoe Community College](https://www.lake Tahoe.edu))