6.2: Orbits and Stabilizers

In this section, we'll examine orbits and stabilizers, which will allow us to relate group actions to our previous study of cosets and quotients.

Definition 6.1.0: The Orbit

Let \(S \) be a \(G \)-set, and \(s \in S \). The **orbit** of \(s \) is the set \(G \cdot s = \{ g \cdot s \mid g \in G \} \), the full set of objects that \(s \) is sent to under the action of \(G \).

There are a few questions that come up when encountering a new group action. The foremost is 'Given two elements \(s \) and \(t \) from the set \(S \), is there a group element such that \(g \cdot s = t \)?' In other words, can I use the group to get from any element of the set to any other? In the case of the action of \(S_n \) on a coin, the answer is yes. But in the case of \(S_4 \) acting on the deck of cards, the answer is no. In fact, this is just a question about orbits. If there is only one orbit, then I can always find a group element to move from any object to any other object. This case has a special name.

Definition 6.1.1: Transitive Group Action

A group action is **transitive** if \(G \cdot s = S \). In other words, for any \(s, t \in S \), there exists \(g \in G \) such that \(g \cdot s = t \). Equivalently, \(S \) contains a single orbit.

Equally important is the stabilizer of an element, the subset of \(G \) which leaves a given element \(s \) alone.

Definition 6.1.2: The Stabilizer

The **stabilizer** of \(s \) is the set \(G \cdot s = \{ g \in G \mid g \cdot s = s \} \), the set of elements of \(G \) which leave \(s \) unchanged under the action.
For example, the stabilizer of the coin with heads (or tails) up is \(\text{A}_n\), the set of permutations with positive sign. In our example with \(\text{S}_4\) acting on the small deck of eight cards, consider the card \(\text{4D}\). The stabilizer of \(\text{4D}\) is the set of permutations \(\text{sigma}\) with \(\text{sigma}(4)=4\); there are six such permutations.

In both of these examples, the stabilizer was a subgroup; this is a general fact!

Proposition 6.1.3

The stabilizer \(G_s\) of any element \(s \in S\) is a subgroup of \(G\).

Proof 6.1.4

Let \(g, h \in G_s\). Then \((gh) \cdot s = g \cdot (h \cdot s) = g \cdot s = s\). Thus, \((gh) \in G_s\). If \(g \in G_s\), then so is \((g\cdot{-1})\): By definition of a group action, \((1 \cdot s) = g^{-1}g \cdot s = g^{-1} s\).

Thus, \((G_s)\) is a subgroup.

Group action morphisms

And now some algebraic examples!

1. Let \(\text{G}\) be any group and \(\text{S}=\text{G}\). The left regular action of \(\text{G}\) on itself is given by left multiplication: \(g \cdot h = gh\). The first condition for a group action holds by associativity of the group, and the second condition follows from the definition of the identity element. (There is also a right regular action, where \(g \cdot h = hg\); the action is ‘on the right’.) The Cayley graph of the left regular action is the same as the usual Cayley graph of the group!

2. Let \(\text{H}\) be a subgroup of \(\text{G}\), and let \(\text{S}\) be the set of cosets \(\text{G/\mathord H}\). The coset action is given by \(g \cdot (xH) = (gx)H\).

\[\begin{array}{|c|c|c|}
\hline
\{1,2,3,4\} & \{2,1,3,4\} & \{3,1,2,4\} \\
\{1,2,3,4\} & \{2,1,3,4\} & \{3,1,2,4\} \\
\{1,3,2,4\} & \{2,3,1,4\} & \{3,2,1,4\} \\
\{1,3,4,2\} & \{2,3,4,1\} & \{3,2,4,1\} \\
\{1,4,2,3\} & \{2,4,1,3\} & \{3,4,1,2\} \\
\{1,4,3,2\} & \{2,4,3,1\} & \{3,4,2,1\} \\
\{2,1,3,4\} & \{2,1,3,4\} & \{3,1,2,4\} \\
\{2,3,1,4\} & \{2,3,1,4\} & \{3,2,1,4\} \\
\{2,3,4,1\} & \{2,3,4,1\} & \{3,2,4,1\} \\
\{2,4,1,3\} & \{2,4,1,3\} & \{3,4,1,2\} \\
\{2,4,3,1\} & \{2,4,3,1\} & \{3,4,2,1\} \\
\{3,1,2,4\} & \{3,1,2,4\} & \{4,1,2,3\} \\
\{3,2,1,4\} & \{3,2,1,4\} & \{4,1,3,2\} \\
\{3,2,4,1\} & \{3,2,4,1\} & \{4,2,1,3\} \\
\{3,4,1,2\} & \{3,4,1,2\} & \{4,2,3,1\} \\
\{3,4,2,1\} & \{3,4,2,1\} & \{4,3,1,2\} \\
\{4,1,2,3\} & \{4,1,2,3\} & \{4,1,3,2\} \\
\{4,1,3,2\} & \{4,1,3,2\} & \{4,2,1,3\} \\
\{4,2,1,3\} & \{4,2,1,3\} & \{4,2,3,1\} \\
\{4,2,3,1\} & \{4,2,3,1\} & \{4,3,1,2\} \\
\{4,3,1,2\} & \{4,3,1,2\} & \{4,3,2,1\} \\
\{4,3,2,1\} & \{4,3,2,1\} & \{4,3,2,1\} \\
\hline
\end{array}\]

Figure 6.1: \(\text{H}\) is the subgroup of \(\text{S}_4\) with \(\text{sigma}(1)=1\) for all \(\text{sigma}\) in \(\text{H}\). This illustrates the action of \(\text{S}_4\) on cosets of \(\text{H}\).

Consider the permutation group \(\text{S}_n\), and fix a number \(i\) such that \(1 \leq i \leq n\). Let \(\text{H}_{\cdot i}\) be the set of permutations...
1. Show H_i is a subgroup of S_n.
2. Now let $n=5$ and Sketch the Cayley graph of the coset action of S_5 on H_1 and H_3.

The coset action is quite special; we can use it to get a general idea of how group actions are put together.

Proposition 6.1.6

Let S be a G-set, with $s \in S$ and G_s. For any $g, h \in G$, $g \cdot s = h \cdot s$ if and only if $gG_s = hG_s$. As a result, there is a bijection between elements of the orbit of (s) and cosets of the stabilizer (G_s).

Proof 6.1.7

We have $(gG_s = hG_s)$ if and only if $(h^{-1}g \in G_s)$, if and only if $(h^{-1}g \cdot s = s)$, if and only if $(h \cdot s = g \cdot s)$, as desired.

In fact, we can generalize this idea considerably. We're actually identifying elements of the $(G\cdot)$-set with cosets of the stabilizer group, which is also a $(G\cdot)$-set; in other words, defining a function (ϕ) between two $(G\cdot)$-sets. The theorem says that this function preserves the group operation: $(\phi(g \cdot s) = g \cdot \phi(s))$.

Definition

Let (S, T) be $(G\cdot)$-sets. A **morphism of $(G\cdot)$-sets** is a function $(\phi : S \rightarrow T)$ such that $(\phi(g \cdot s) = g \cdot \phi(s))$ for all $(g \in G, s \in S)$. We say the $(G\cdot)$-sets are **isomorphic** if (ϕ) is a bijection.

We can then restate the proposition:

Theorem 6.1.9

For any (s) in a $(G\cdot)$-set (S), the orbit of (s) is isomorphic to the coset action on $(G\cdot s)$.

Now we can use LaGrange's theorem in a very interesting way! We know that the cardinality of a subgroup divides the order of the group, and that the number of cosets of a subgroup (H) is equal to $(|G|/\text{ord } H)$. Then we can use the relationship between cosets and orbits to observe the following:

Theorem 6.1.10

Let (S) be a $(G\cdot)$-set, with $(s \in S)$. Then the size of the orbit of (s) is $(|G|/\text{ord } G_s)$.

UC Davis ChemWiki is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License.
For a somewhat obvious example, considering \((S_{13}) \) acting on the numerical values of playing cards, we can observe that any given card is fixed by a subgroup of \((S_{13}) \) isomorphic to \((S_{12}) \) (switching around the other twelve numbers in any way doesn't change affect the given card). Then the size of the orbit of the card is \(\frac{|(S_{13})|}{|S_{12}|} = 13 \). That's a number we could have figured out directly by reasoning a bit, but it shows us that the theorem is working sensibly!

Now that we have a notion of isomorphism of \((G) \)-sets, we can say something to classify \((G) \)-sets. What kinds of actions are possible?

Let \((G) \) be a finite group, and \((S) \) a finite \((G) \)-set. Then \((S) \) is a collection of orbits. We know that every orbit is isomorphic to \((G) \) acting on the cosets of some subgroup of \((H) \). So we have the following theorem:

Theorem 6.1.11: Classification of \((G) \)-Sets

Let \((G) \) be a finite group, and \((S) \) a finite \((G) \)-set. Then \((S) \) is isomorphic to a union of coset actions of \((G) \) on subgroups.

For example, \((S_{13}) \) acting on a full deck of cards decomposes as a union of four orbits, each isomorphic to the coset action of \((S_{13}) \) on a subgroup isomorphic to \((S_{12}) \).

In short, to understand all possible \((G) \)-sets, we should try to understand all of the subgroups of \((G) \). In general, this is a hard problem, though it's easy for some cases.

Exercise 6.1.12

1. For \(n=15 \), draw Cayley graphs of the coset action of \(\mathbb{Z}_{15} \) on each of its cosets.
2. Describe all the subgroups of \(\mathbb{Z}_n \) for arbitrary \(n \).

\(S_n \) acts on subsets of \(N = \{1,2,3,\ldots,n\} \) in a natural way: if \(U = \{i_1, \ldots, i_k\} \subset N \), then \(\sigma \cdot U = \{\sigma(i_1), \ldots, \sigma(i_k)\} \).

1. Decompose the action of \(S_4 \) on the subsets of \(\{1,2,3,4\} \) into orbits.
2. Draw a Cayley graph of the action.
3. Identify each orbit with the coset action on a subgroup of \(S_4 \).

Contributors and Attributions

- Tom Denton (Fields Institute/York University in Toronto)