Appendix D: List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\to)</td>
<td>Conditional statement</td>
</tr>
<tr>
<td>(\mathbb{R})</td>
<td>set of real numbers</td>
</tr>
<tr>
<td>(\mathbb{Q})</td>
<td>set of rational numbers</td>
</tr>
<tr>
<td>(\mathbb{Z})</td>
<td>set of integers</td>
</tr>
<tr>
<td>(\mathbb{N})</td>
<td>set of natural numbers</td>
</tr>
<tr>
<td>(y \in A)</td>
<td>(y) is an element of (A)</td>
</tr>
<tr>
<td>(z \notin A)</td>
<td>(z) is not an element of (A)</td>
</tr>
<tr>
<td>{</td>
<td>}</td>
</tr>
<tr>
<td>(\forall)</td>
<td>universal quantifier</td>
</tr>
<tr>
<td>(\exists)</td>
<td>existential quantifier</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>the empty set</td>
</tr>
<tr>
<td>(\wedge)</td>
<td>conjunction</td>
</tr>
<tr>
<td>(\vee)</td>
<td>disjunction</td>
</tr>
</tbody>
</table>
\[\neg \] negation
\[\leftrightarrow \] biconditional statement
\[\equiv \] logically equivalent
\[m \mid n \] \(m \) divides \(n \)
\[(a \equiv b) \pmod{n} \] \(a \) is congruent to \(b \) modulo \(n \)
\[\lfloor x \rfloor \] \(m \) divides \(n \)
\[A = B \] \(A \) equals \(B \) (set equality)
\[A \subseteq B \] \(A \) is a subset of \(B \)
\[A \not\subseteq B \] \(A \) is not a subset of \(B \)
\[A \subset B \] \(A \) is a proper subset of \(B \)
\[\mathcal{P}(A) \] power set of \(A \)
\[|A| \] cardinality of a finite set \(A \)
\[A \cap B \] intersection of \(A \) and \(B \)
\[A^c \] complement of \(A \)
\[A - B \] set difference of \(A \) and \(B \)
\[A \times B \] Cartesian product of \(A \) and \(B \)
\[(a, b) \] ordered pair
\[\mathbb{R} \times \mathbb{R} \] Cartesian plane
\[\mathbb{R}^2 \] Cartesian plane
\[\bigcup_{X \in \mathcal{C}} X \] union of a family of sets
\[\bigcap_{X \in \mathcal{C}} X \] intersection of a finite family of sets
\[\bigcup_{j = 1}^{n} A_j \] union of a finite family of sets
\[\bigcap_{j = 1}^{n} A_j \] intersection of a finite family of sets
\[\bigcup_{j = 1}^{\infty} B_j \] union of an infinite family of sets
\[\bigcap_{j = 1}^{\infty} B_j \] intersection of an infinite family of sets
\{ \alpha \in \Lambda \} \quad \text{indexed family of sets}

\bigcup_{\alpha \in \Lambda} A_\alpha \quad \text{union of an indexed family of sets}

\bigcap_{\alpha \in \Lambda} A_\alpha \quad \text{intersection of an indexed family of sets}

(n!)

(n) \quad \text{factorial}

(f_1, f_2, f_3, \ldots) \quad \text{Fibonacci numbers}

(s(n)) \quad \text{sum of the divisors of } (n)

(f: A \to B) \quad \text{function from } (A) \text{ to } (B)

dom((f)) \quad \text{domain of the function } (f)

codom((f)) \quad \text{codomain of the function } (f)

(f(x)) \quad \text{image of } (x) \text{ under } (f)

range((f)) \quad \text{range of the function } (f)

(d(n)) \quad \text{number of divisors of } (n)

(I_A) \quad \text{identity function on the set } (A)

(p_1, p_2) \quad \text{projection functions}

det((A)) \quad \text{determinant of } (A)

(A^T) \quad \text{transpose of } (A)

det: \mathbb{M}_{2, 2} \to \mathbb{R} \quad \text{determinant function}

(g \circ f: A \to C) \quad \text{composition of function } (f) \text{ and } (g)

(f^{-1}) \quad \text{the inverse of the function } (f)

\text{Sin} \quad \text{the restricted sine function}

\text{Sin}^{-1} \quad \text{the inverse sine function}

dom((R)) \quad \text{domain of the relation } (R)

range((R)) \quad \text{range of the relation } (R)

(x \ R \ y) \quad (x) \text{ is related to } (y)
\(x \sim y \) \(\) is related to \(y \)

\(x \nsim y \) \(\) is not related to \(y \)

\(R^{-1} \) the inverse of the relation \(R \)

\([a]\) equivalence class of \(a \)

\([a]\) congruence class of \(a \)

\(\mathbb{Z}_{n} \) the integers modulo \(n \)

\([a] \oplus [c] \) addition in \(\mathbb{Z}_{n} \)

\([a] \odot [c] \) multiplication in \(\mathbb{Z}_{n} \)

gcd(\(a \), \(b \)) greatest common divisor of \(a \) and \(b \)

\(f(A) \) image of \(A \) under the function \(f \)

\(f^{-1}(C) \) pre-image of \(C \) under the function \(f \)

\(A \thickapprox B \) \(A \) is equivalent to \(B \)

\(A \) and \(B \) have the same cardinality

\(\mathbb{N}_{k} \) \(\mathbb{N}_{k} = \{1, 2, ..., k\} \)

\(\text{card}(A) = k \) cardinality of \(A \) is \(k \)

\(\text{card}(\mathbb{N}) \) cardinality of \(\mathbb{N} \)

\(c \) cardinal number of the continuum