2.2: Equivalence Relations, and Partial order

Definition

A binary relation is an equivalence relation on a non-empty set \(\langle S \rangle \) if and only if the relation is reflexive(R), symmetric(S) and transitive(T).

Definition

A binary relation is a **partial order** if and only if the relation is reflexive(R), antisymmetric(A) and transitive(T).

**Example \(\langle \text{PageIndex\{1\}} \rangle : \langle (=) \rangle **

Let

\[S = \mathbb{R} \]

and

\[R \]

be \(= \). Is the relation a) reflexive, b) symmetric, c) antisymmetric, d) transitive, e) an equivalence relation, f) a partial order.

Solution:

1. Yes

\[R \]
is reflexive.

Proof:

Let
\[a \in \mathbb{R} \,.
\]

Then
\[a = a \,.
\]

Hence
\[R \]

is reflexive.

2. Yes

\[R \]

is reflexive.

Proof:

Let
\[(a, b) \in \mathbb{R} \,.
\]

If
\[a = b \]

, clearly
\[b = a \,.
\]

Hence
\[R \]

is symmetric.

1. Yes

\[R \]

is antisymmetric.

Proof:
Let
\(a, b \in \mathbb{R} \)
s.t.
\[a = b \]
and
\[b = a \]
then clearly
\[a = b \quad \forall a, b \in \mathbb{R} \]

2. Yes
\(R \)
is transitive.

Proof:

Let
\(a, b, c \in \mathbb{R} \)
s.t.
\[a = b \]
and
\[b = c \]

We shall show that
\(aRc \)

Since
\[a = b \]
and

it follows that
\[a = c \]

Thus
\(aRc \)

?
3. Yes

\(R \)
is an equivalence relation.

Proof:

Since

\(R \)
is reflexive, symmetric and transitive, it is an equivalence relation.

4. Yes

\(R \)
is a partial order.

Proof:

\(R \)
is a partial order, since

\(R \)
is reflexive, antisymmetric and transitive.

Example \(\PageIndex{2} \): Less than or equal to

Let

\(S = \mathbb{R} \)
and

\(R \)
be

\(\leq \).

Is the relation a) reflexive, b) symmetric, c) antisymmetric, d) transitive, e) an equivalence relation, f) a partial order.

Solution

1. Yes,

\(R \)
is reflexive.

Proof:

We will show that

\(a R a \)
is true.
Let
\(a \in S \)
that is
\(a \in \mathbb{R} \).

Since
\(a \leq a \),
\(R \)
is reflexive.

2. No,
\[R \]
is not symmetric.

Counterexample:

Let
\(a = 2 \)
and
\(b = 3 \)
which are both
\(\in \mathbb{R} \).

It is true that
\(2 \leq 3 \), but it is not true that
\(3 \leq 2 \).

Thus
\(R \)
is not symmetric.

3. Yes,
\(R \)
is antisymmetric.
Proof:

We will show that given

\[a \leq b \]
and

\[b \leq a \]
that

\[a = b \]

Since

\[a \leq b \]
,

\[\exists \{ x \in \mathbb{R} : x \geq 0 \} \]
s.t.

\[a + x = b \]

Further, since

\[b \leq a \]
,

\[\exists \{ y \in \mathbb{R} : y \geq 0 \} \]
,

\[b + y = a \]

Then

\[a + x = a - y \]

Thus,

\[x + y = 0 \]

Since,

\[x, y \geq 0 \]
,

\[x, y = 0 \]
thus

\[a = b \]
4. Yes, R is transitive.

Proof:

We will show that given

\[a \leq b \]

and

\[b \leq c \]

that

\[a \leq c \]

Since

\[a \leq b \]

\[\exists \{ x \in \mathbb{R} : x \geq 0 \} \]

s.t.

\[a + x = b \]

Further, since

\[b \leq c \]

\[\exists \{ y \in \mathbb{R} : y \geq 0 \} \]

\[b + y = c \]

Then

\[a + x + y \leq c \]

Since,

\[x, y \geq 0 \]

thus

\[a \leq c \]
5. No,
\(R \)
is not an equivalence relation on
\(S \)
since it is not symmetric.

6. Yes,
\(R \)
is a partial order on
\(S \)
since it is reflexive, antisymmetric and transitive.

Definition

Given an equivalence relation \((R) \) over a set \((S, \) \) for any \((a \in S) \) the equivalence class of a is the set \(([a]_R =\{ b \in S \mid a \ R \ b \}) \), that is
\(([a]_R) \) is the set of all elements of \(S \) that are related to \((a) \).

Example \((PageIndex(3)) \): Equivalence relation

Define a relation that two shapes are related iff they are the same color. Is this relation an equivalence relation?

Equivalence classes are:
Example \(\PageIndex{4}\):

Define a relation that two shapes are related iff they are similar. Is this relation an equivalence relation?

Equivalence classes are:

![Equivalence classes image]

Theorem \(\PageIndex{1}\)

If \(\sim\) is an equivalence relation over a non-empty set \((S)\). Then the set of all equivalence classes is denoted by \(\{[a]_{\sim}\mid a \in S\}\) forms a partition of \((S)\).

This means

1. Either \([a] \cap [b] = \emptyset\) or \([a] = [b]\), for all \(a, b \in S\).
2. \((S = \cup_{a \in S} [a])\).

Proof

Assume

\(\sim\)

is an equivalence relation on a non-empty set

\(S\).

Let

\(x, y \in S\).

If
\[[x] \sim \cap [y] \sim = \emptyset \]
then we are done. Otherwise,

assume
\[[x] \sim \cap [y] \sim \neq \emptyset \]

Let
\[a \]
be the common element between them.

Let
\[a \in [x] \sim \cap [y] \sim \]

Then
\[a \in [x] \sim \]

and
\[a \in [y] \sim \]

, which means that
\[a \sim x \]

and
\[a \sim y \]

Since
\[\sim \]
is an equivalence relation and
\[a \sim x, x \sim a \]

Since
\[x \sim a \]

and
\[a \sim y \]

(due to transitive property),
\[x \sim y \]

Thus
\[y \in [x] \sim \]

and

\(x \in [y]_\sim \).

Hence
\([x]_\sim = [y]_\sim \).

Next, we will show that
\(S = \bigcup_{x \in S} [x]_\sim \).

First we shall show that
\(S \subseteq \bigcup_{x \in S} [x]_\sim \).

Let
\(m \in S \).

Then
\([m]_\sim \) exists and
\(m \in [m]_\sim \).

Hence
\(m \in \bigcup_{x \in S} [x]_\sim \).

Thus
\(S \subseteq \bigcup_{x \in S} [x]_\sim \).

Conversely, we shall show that
\(\bigcup_{x \in S} [x]_\sim \subseteq S \).

Let
\[d \in \bigcup_{x \in S} [x]_\sim \]

Then
\[d \in [x]_\sim \]
for some
\[x \in S \]

Thus
\[d \sim x \]
\[d \in x \]

Thus
\[\bigcup_{x \in S} [x]_\sim \subseteq S \]

Since
\[S \subseteq \bigcup_{x \in S} [x]_\sim \]
and
\[\bigcup_{x \in S} [x]_\sim \subseteq S \]
then
\[S = \bigcup_{x \in S} [x]_\sim \]

Note
For every equivalence relations over a nonempty set \(\setminus (S) \), \(\setminus (S) \) has a partition.

For the following examples, determine whether or not each of the following binary relations
\[R \]
on the given set
\[A \]
is reflexive, symmetric, antisymmetric, or transitive. If a relation has a certain property, prove this is so; otherwise, provide a counterexample to show that it does not. If
\[R \]
is an equivalence relation, describe the equivalence classes of A.

Example ((PageIndex(5))))

Let $A = S \times S$.

. Define a relation R on A by

$(a, b) R (c, d)$ if and only if

$10a + b \leq 10c + d$.

Solution

1. R is reflexive on S.

Proof:

Let $(a, b) \in A$.

We will show that

$10a + b \leq 10a + b$.

Since

$10a + b = 10a + b$,

then

$10a + b \leq 10a + b$.
Since

\((a, b) R (a, b)\)

\(R\)
is reflexive on

\(S\).

2.

\(R\)
is not symmetric on

\(S\).

Counter Example:

Let

\(a = 0, b = 1, c = 2, d = 3\).

Note

\(10(0) + 1 \leq 10(2) + 3\), specifically

\((a, b) R (c, d)\),

\(1 \leq 23\)
is true.

However,

\((c, d) R (a, b)\),

\(23 \leq 1\)
is false.

Since

\(b \not{R} a\),

\(R\)
is not symmetric on

\(S\).
3.

\(R \)

is antisymmetric on

\(S \).

Proof:

Let

\[a, b, c, d \in S \]

s.t.

\[10a + b \leq 10c + d \]

and

\[10c + d \leq 10a + b \].

Since

\[10a + b \leq 10c + d \]

and

\[10c + d \leq 10a + b \],

\[10a + b = 10c + d \].

We will show that

\[a = c \]

and

\[b = d \].

\[0 \leq a, b, c, d \leq 9 \]

by definition.

Since

\[0 \leq b, d \leq 9 \]

and

\[0 \leq a, c \leq 9 \],
Thus
\[(a, b)R(c, d)\]
is antisymmetric on
\[S\]?

5.
\[R\]
is transitive on
\[S\].

Proof:

Let
\[a, b, c, d, e, f \in S\]
s.t.
\[10a + b \leq 10c + d\]
and
\[10c + d \leq 10e + f\].

We will show that
\[10a + b \leq 10c + f\].

Since
\[10a + b \leq 10c + d\],
\[10a + b \leq 10c + f\]
Thus

R

is transitive on

S

$.?

6.

R

is not an equivalence relation since it is not reflexive, symmetric, and transitive.

Example $\PageIndex{6}$

Let

$A = \mathbb{Z}\setminus\{0\}$

. Define a relation R
on A

, by

$a R b$

if and only if

$ab > 0$

.?

Solution

1. R

is reflexive on A

.?

Proof:

Let

$a \in \mathbb{Z}\setminus\{0\}$

we will show that

$a \cdot a > 0$

.?

Clearly
\[a^2 > 0 \]
since
\[a \neq 0 \]
and a negative integer multiplied by a negative integer is a positive integer in \(\mathbb{Z} \).

Since
\[aRa \]
,
\[R \]
is reflexive on \(A \).

\textbf{Proof:}

We will show that if
\[aRb \]
, then
\[bRa \]
.

Let
\[a, b \in A \]
s.t.
\[aRb \]
, that is
\[ab > 0 \]
.

Since
\[ab = ba \in \mathbb{Z} \]
Since

\[ba > 0 \]

is symmetric on \(A \).

3.

\(R \)
is not antisymmetric on \(A \).

Counter Example:

Let

\[a = 3 \]

and

\[b = 4 \]

then

\[3 \cdot 4 > 0 \]

and

\[4 \cdot 3 > 0 \]

Since

\[3 \neq 4 \]

\(R \)
is not antisymmetric on \(A \).

4.
R is transitive on A.

Proof:

Let $a, b \in A$ s.t. $ab > 0$ and $b, c \in A$ s.t. $bc > 0$.

There are two cases to be examined:

Case 1:

$a > 0$ and $b > 0$.

Since $b > 0$,

c > 0

thus

$ac > 0$.

Case 2:

$a < 0$ and $b < 0$.

Since $b < 0$,
\(c < 0 \)

thus

\(ac > 0 \).

Since

\((a \ R \ c)\)
in both possible cases

\(R \)
is transitive on

\(A \).

5. Since

\(R \)
is reflexive, symmetric and transitive, it is an equivalence relation. Equivalence classes are

\([1]\)
and

\([-1]\).

Let

\(a \in A \)
, then

\([a] = \{x \in A : x \sim a\}\)

\(= \{x \in A : xa > 0\}\).

Case 1:

\(a > 0 \)
, then

\(x > 0 \).

\([a] = \{x \in A : x > 0\}\).
\[[1] = \{1, 2, 3, \ldots \} \]

Case 2:
\[
\alpha < 0
\]
then
\[
x < 0
\]

\[
[a] = \{x \in A : x < 0\}
\]

\[
[-1] = \{-3, -2, -1\}
\]

Note this is a partition since
\[
[x] \cap [y] = \emptyset
\]
or
\[
[x] = [y], \forall x, y \in S
\]
So we have all the intersections are empty.

\[
[1] \cap [-1] = \emptyset
\]

Further, we have
\[
S = \bigcup_{x \in S} [x]
\]
Note that
\[
\emptyset
\]
is excluded from
\[
S
\]

Hasse Diagram

Definition

Let S be a non empty set and let \((R)\) be a partial order relation on \((S)\). Then two elements \((a)\) to \((b)\) of \((S)\) are connected if \((a R b)\). This diagram is called Hasse diagram.