3.2: Residue Systems and Euler’s φ-Function

Residue of $(a \mod m)$. As a result, we see that any integer is congruent to one of the integers $(0, 1, 2, ..., m-1)$ modulo m.

A complete residue system modulo (m) is a set of integers such that every integer is congruent modulo (m) to exactly one integer of the set.

The easiest complete residue system modulo (m) is the set of integers $(0, 1, 2, ..., m-1)$. Every integer is congruent to one of these integers modulo (m).

The set of integers $(\{0, 1, 2, 3, 4\})$ form a complete residue system modulo (5). Another complete residue system modulo (5) could be $(\{6, 7, 8, 9, 10\})$.

A reduced residue system modulo (m) is a set of integers (r_i) such that $((r_i, m)=1)$ for all (i) and $(r_i \neq r_j \mod m)$ if $(i \neq j)$.

Notice that, a reduced residue system modulo (m) can be obtained by deleting all the elements of the complete residue system set that are not relatively prime to (m).

The set of integers $(\{1, 5\})$ is a reduced residue system modulo (6).

The following lemma will help determine a complete residue system modulo any positive integer (m).

Lemma

A set of (m) incongruent integers modulo (m) forms a complete residue system modulo (m).
We will prove this lemma by contradiction. Suppose that the set of \(\{m\} \) integers does not form a complete residue system modulo \(\{m\} \). Then we can find at least one integer \(\{a\} \) that is not congruent to any element in this set. Hence non of the elements of this set is actually congruent to the remainder when \(\{a\} \) is divided by \(\{m\} \). Thus dividing by \(\{m\} \) yields to at most \(\{m-1\} \) remainders. Therefore by the pigeonhole principle, at least two integers in the set that have the same remainder modulo \(\{m\} \). This is a contradiction since the set of integers is formed of \(\{m\} \) integers that are incongruent modulo \(\{m\} \).

If \(\{a_1, a_2, ..., a_m\} \) is a complete residue system modulo \(\{m\} \), and if \(\{k\} \) is a positive integer with \(\{(k,m)=1\} \), then \(\{ka_1+b, ka_2+b, ..., ka_m+b\} \) is another complete residue system modulo \(\{m\} \) for any integer \(\{b\} \).

Let us prove first that no two elements of the set \(\{\{ka_1+b, ka_2+b, ..., ka_m+b\}\} \) are congruent modulo \(\{m\} \). Suppose there exists \(\{i\} \) and \(\{j\} \) such that \(\{ka_i+b\equiv ka_j+b(mod\ m)\} \). Thus we get that \(\{ka_i\equiv ka_j(mod\ m)\} \). Now since \(\{(k,m)=1\} \), we get \(\{a_i\equiv a_j(mod\ m)\} \). But for \(\{i\neq j\} \), \(\{a_i\} \) is inequivalent to \(\{a_j\} \) modulo \(\{m\} \). Thus \(\{i=j\} \).

Now notice that there are \(\{m\} \) inequivalent integers modulo \(m \) and thus by Lemma 10, the set form a complete residue system modulo \(\{m\} \).

Euler’s \(\phi \)-Function

We now present a function that counts the number of positive integers less than a given integer that are relatively prime to that given integer. This function is called Euler \(\phi \)-function. We will discuss the properties of Euler \(\phi \)-function in details in chapter 5. It will be sufficient for our purposes in this chapter to the notation.

The Euler \(\phi \)-function of a positive integer \(n \), denoted by \(\phi(n) \) counts the number of positive integers less than \(n \) that are relatively prime to \(n \).

Since 1 and 3 are the only two integers that are relatively prime to 4 and less than 4, then \(\phi(4)=2 \). Also, 1, 2, ..., 6 are the integers that are relatively prime to 7 that are less than 7, thus \(\phi(7)=6 \).

Now we can say that the number of elements in a reduced residue system modulo \(n \) is \(\phi(n) \).

If \(\{a_1, a_2, ..., \{\phi(n)\}\} \) is a reduced residue system modulo \(n \) and \(\{(k,n)=1\} \), then \(\{ka_1, ka_2, ..., ka_{\{\phi(n)\}}\} \) is a reduced residue system modulo \(n \).

The proof proceeds exactly in the same way as that of Theorem 24.

Exercises

1. Give a reduced residue system modulo 12.
2. Give a complete residue system modulo 13 consisting only of odd integers.
3. Find \(\phi(8) \) and \(\phi(101) \).
Contributors and Attributions

- Dr. Wissam Raji, Ph.D., of the American University in Beirut. His work was selected by the Saylor Foundation’s Open Textbook Challenge for public release under a Creative Commons Attribution (CC BY) license.