3.5: Theorems of Fermat, Euler, and Wilson

In this section we present three applications of congruences. The first theorem is Wilson’s theorem which states that
\((p-1)!+1\) is divisible by \(p\), for \(p\) prime. Next, we present Fermat’s theorem, also known as Fermat’s little theorem
which states that \((a^p)\) and \((a)\) have the same remainders when divided by \(p\) where \(p \nmid a\). Finally we present
Euler’s theorem which is a generalization of Fermat’s theorem and it states that for any positive integer \((m)\) that is relatively prime to an integer \((a)\),

\[a^{\phi(m)} \equiv 1 \pmod{m}\]

where \(\phi\) is Euler’s \(\phi\)-function. We start by proving a theorem about the inverse of integers modulo primes.

Theorem

Let \((p)\) be a prime. A positive integer \((m)\) is its own inverse modulo \((p)\) if and only if \((p)\) divides \((m+1)\) or \((p)\) divides \((m-1)\).

Suppose that \((m)\) is its own inverse. Thus \([m.m \equiv 1 \pmod{p}].\) Hence \([p\mid m^{2}-1]\). As a result,

\([p\mid (m-1) \text{ or } p\mid (m+1)]\]

We get that \([m\equiv 1\pmod{p})\) or \([m\equiv -1\pmod{p})\).

Conversely, suppose that

\([m\equiv 1\pmod{p}) \text{ or } [m\equiv -1\pmod{p})]\]

Thus
Wilson’s Theorem

If \(p \) is a prime number, then \(p \) divides \((p-1)!+1 \).

When \(p=2 \), the congruence holds. Now let \(p>2 \). Using Theorem 26, we see that for each \(1 \leq m \leq p \), there is an inverse \(1 \leq \bar{m} \leq p \) such that \(m \bar{m} \equiv 1 (\text{mod} \ p) \). Thus by Theorem 28, we see that the only two integers that have their own inverses are \(1 \) and \(p-1 \). Hence after coupling the integers from 2 to \((p-2) \) each with its inverse, we get \(\prod_{i=2}^{p-1} i \equiv 1 (\text{mod} \ p) \). Thus we get \(\prod_{i=2}^{p-3} i \equiv (p-1) (\text{mod} \ p) \). As a result, we have \((p-1)! \equiv -1 (\text{mod} \ p) \).

Note also that the converse of Wilson’s theorem also holds. The converse tells us whether an integer is prime or not.

If \(m \) is a positive integer with \(m \geq 2 \) such that \((m-1)!+1 \equiv 0 (\text{mod} \ m) \) then \(m \) is prime.

Suppose that \(m \) has a proper divisor \(c \). That is \(m=ce_1c_2 \) where \(1<e_1<e_2<m \). Thus \(c \equiv 1 (\text{mod} \ (m-1)!+1) \). Since \(m \mid (m-1)!+1 \), we get \(m \mid (c-1)!+1 \). As a result, by Theorem 4, we get that \((c-1)!+1 \equiv 0 (\text{mod} \ m) \) which gives that \(c \equiv 1 (\text{mod} \ m) \). This is a contradiction and hence \(m \) is prime.

We now present Fermat’s Theorem or what is also known as Fermat’s Little Theorem. It states that the remainder of \(a^{p-1} \) when divided by a prime \(p \) that doesn’t divide \(a \) is 1. We then state Euler’s theorem which states that the remainder of \(a^{\phi(m)} \) when divided by a positive integer \(m \) that is relatively prime to \(a \) is 1. We prove Euler’s Theorem only because Fermat’s Theorem is nothing but a special case of Euler’s Theorem. This is due to the fact that for a prime number \(p \), \(\phi(p)=p-1 \).

Euler’s Theorem

If \(m \) is a positive integer and \(a \) is an integer such that \((a,m)=1 \), then \(a^{\phi(m)} \equiv 1 (\text{mod} \ m) \).

Note that \(3^4=81 \equiv 1 (\text{mod} \ 5) \). Also, \(2^{\phi(9)}=2^6=64 \equiv 1 (\text{mod} \ 9) \).

We now present the proof of Euler’s theorem.

Proof

Let \(\{k_1,k_2,...,k_{\phi(m)}\} \) be a reduced residue system modulo \(m \). By Theorem 25, the set \(\{a k_1,a k_2,...,a k_{\phi(m)}\} \) also forms a reduced residue system modulo \(m \). Thus

\[
\prod_{i=1}^{\phi(m)} a k_i \equiv a^{\phi(m)} k_1 k_2 ... k_{\phi(m)} (\text{mod} \ m).
\]

Now since \(((k_i,m)=1) \) for all \(i \), we have \(((k_1 k_2 ... k_{\phi(m)},m)=1) \). Hence by Theorem 22 we can cancel the product of \(k \)'s on both sides and we get
$a^{\phi(m)} \equiv 1 \pmod{m}$

An immediate consequence of Euler’s Theorem is:

Fermat’s Theorem

If p is a prime and a is a positive integer with $\not{\mid} (p \mid a)$, then $a^{p-1} \equiv 1 \pmod{p}$.

We now present a couple of theorems that are direct consequences of Fermat’s theorem. The first states Fermat’s theorem in a different way. It says that the remainder of a^{p} when divided by (p) is the same as the remainder of a when divided by (p). The other theorem determines the inverse of an integer (a) modulo (p) where $(p\mid a)$.

If (p) is a prime number and (a) is a positive integer, then $a^{p} \equiv a \pmod{p}$.

If $(p\mid a)$, by Fermat’s theorem we know that $a^{p-1} \equiv 1 \pmod{p}$. Thus, we get $a^{p} \equiv a \pmod{p}$. Now if $(p\mid a)$, we have $a^{p} \equiv a \equiv 0 \pmod{p}$.

Exercises

1. Show that $10!+1$ is divisible by 11.

2. What is the remainder when $5!25!$ is divided by 31?

3. What is the remainder when 5^{100} is divided by 7?

4. Show that if p is an odd prime, then $2(p-3)! \equiv -1 \pmod{p}$.

5. Find a reduced residue system modulo (2^m), where (m) is a positive integer.

6. Show that if $(a_1,a_2,...,a_{\phi(m)})$ is a reduced residue system modulo (m), where (m) is a positive integer with $(m\neq 2)$, then $(a_1+a_2+...+a_{\phi(m)} \equiv 0 \pmod{m})$.

7. Show that if (a) is an integer such that (a) is not divisible by 3 or such that (a) is divisible by 9, then $(a^7 \equiv a \pmod{63})$.
Contributors

• Dr. Wissam Raji, Ph.D., of the American University in Beirut. His work was selected by the Saylor Foundation’s Open Textbook Challenge for public release under a Creative Commons Attribution (CC BY) license.