Skip to main content
Mathematics LibreTexts

5.2: Lorentz invariance and bilateral multiplication

  • Page ID
    41019
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    For Hermitian matrices: \(K^{\dagger} = K, \bar{K} = \tilde{K}\) and the same for R. Why bilateral multiplication? To eliminate nonphysical factors indicated as \(\underbrace{}\).

    \[\begin{array}{c} {\begin{pmatrix} {e^{(\mu-i \phi)/2}}&{0}\\ {0}&{e^{-(\mu-i \phi)/2}} \end{pmatrix} \begin{pmatrix} {k_{0}+k_{3}}&{k_{1}-i k_{2}}\\ {k_{1}+i k_{2}}&{k_{2}-k_{3}} \end{pmatrix} =}\\ {\begin{pmatrix} {e^{\mu/2}(k_{0}+\mu_{3}) \underbrace{e^{-i \phi/2}}}&{\underbrace{e^{\mu/2}}(k_{1}-i k_{2}) e^{-i \phi/2}}\\ {\underbrace{e^{-\mu/2}}(k_{1}+i k_{2}) e^{-i \phi/2}}&{e^{\mu/2}(k_{0}-k_{3}) \underbrace{e^{i \phi/2}}} \end{pmatrix} \times}\\ {\begin{pmatrix} {k_{0}+k_{3}}&{k_{1}-ik_{2}}\\ {k_{1}+ik_{2}}&{k_{2}-k_{3}} \end{pmatrix} \begin{pmatrix} {e^{(\mu+i \phi)/2}}&{0}\\ {0}&{e^{-(\mu+i \phi)/2}} \end{pmatrix} =}\\ {\begin{pmatrix} {e^{\mu/2}(k_{0}+\mu_{3}) \underbrace{e^{i \phi/2}}}&{\underbrace{e^{-\mu/2}}(k_{1}-i k_{2}) e^{-i \phi/2}}\\ {\underbrace{e^{-\mu/2}}(k_{1}+i k_{2}) e^{i \phi/2}}&{e^{\mu/2}(k_{0}-k_{3}) \underbrace{e^{-i \phi/2}}} \end{pmatrix} \times}\\ {\begin{pmatrix} {e^{(\mu-i \phi)/2}}&{0}\\ {0}&{e^{-(\mu-i \phi)/2}} \end{pmatrix} \begin{pmatrix} {k_{0}+k_{3}}&{k_{1}-i k_{2}}\\ {k_{1}+i k_{2}}&{k_{2}-k_{3}} \end{pmatrix} \begin{pmatrix} {e^{(\mu+i \phi)/2}}&{0}\\ {0}&{e^{-(\mu+i \phi)/2}} \end{pmatrix} =}\\ {\begin{pmatrix} {e^{\mu/2}(k_{0}+\mu_{3})}&{e^{-i \phi/2} (k_{1}-i k_{2})}\\ {e^{i \phi/2} (k_{1}+i k_{2})}&{e^{\mu/2}(k_{0}-k_{3})} \end{pmatrix}} \end{array}\]

    Or, in \(4 \times 4\) matrix form:

    \[\begin{array}{c} {\begin{pmatrix} {k_{1}'}\\ {k_{2}'}\\ {k_{3}'}\\ {k_{0}'} \end{pmatrix} = \begin{pmatrix} {\cos \phi}&{-\sin \phi}&{0}&{0}\\ {\sin \phi}&{\cos \phi}&{0}&{0}\\ {0}&{0}&{\cosh \mu}&{\sinh \mu}\\ {0}&{0}&{\sinh \mu}&{\cosh \mu} \end{pmatrix} \begin{pmatrix} {k_{1}'}\\ {k_{2}'}\\ {k_{3}'}\\ {k_{0}'} \end{pmatrix}} \end{array}\]

    Circular rotation around the z-axis by \(\phi\) and hyperbolic rotation along the same asix by th ehyper­ bolic angle \(\mu\): Lorentz four-screw: \(\mathcal{L}(\phi, \hat{z}, \mu)\). These transformations form an Abelian group.

    In the Pauli algebra the formal simplicity of these relations is maintained even for arbitrary axial directions. To be sure, obtaining explicit results from the bilateral products may become cumber­ some. However, the standard vectorial results can be easily extracted.


    This page titled 5.2: Lorentz invariance and bilateral multiplication is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by László Tisza (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.