Skip to main content
Mathematics LibreTexts

5.4: On the us of Involutions

  • Page ID
    41021
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The existence of the three involutions ( see Equations A.1.1 above), provides a great deal of flexil­ bity. However, the most efficient use of these concepts calls for some care.

    For any matrix of \(\mathcal{A}_{2}\)

    \[\begin{array}{c} {A^{-1} = \frac{\tilde{A}}{|A|} |A| = \frac{1}{2} Tr(A \tilde{A})} \end{array}\]

    In the case of Hermitian matrices we have two alternatives:

    \[\begin{array}{c} {k_{0}r_{0}-\vec{k} \cdot \vec{r} = \frac{1}{2} Tr(K \tilde{R})} \end{array}\]

    or

    \[\begin{array}{c} {k_{0}r_{0}-\vec{k} \cdot \vec{r} = \frac{1}{2} Tr(K \bar{R})} \end{array}\]

    It will appear, however from later discussions, that the complex reflection of Equation A.4.3 is more appropriate to describe the transition from contravariant to covariant entities.

    A case in point is the formal representation of the mirroring of a four-vector in a plane with the normal along \(\hat{x}_{1}\). We have

    \[\begin{array}{c} {K' = \sigma_{1} \bar{K} \sigma_{1} = \sigma_{1} (k_{0}1-k_{1} \sigma_{1}-k_{2} \sigma_{2}-k_{3} \sigma_{3}) \sigma_{1}}\\ {= \sigma_{1}^{2} (k_{0}1-k_{1} \sigma_{1}+k_{2} \sigma_{2}+k_{3} \sigma_{3})}\\ {= k_{0}1-k_{1} \sigma_{1}+k_{2} \sigma_{2}+k_{3} \sigma_{3}} \end{array}\]

    More generally the mirroring in a plane with normal x is achieve by means of the operation

    \[\begin{array}{c} {K' = \hat{a} \cdot \vec{\sigma} \bar{K} \hat{a} \cdot \vec{\sigma}} \end{array}\]

    Again, we could have chosen \(\tilde{K}\) instead of \(\bar{K}\).

    However, Eq (22) generalizes to the inversion of the electromagnetic six-vector \(\vec{f} = \vec{E}+i \vec{B}\):

    \[\begin{array}{c} {(\vec{E}'+i \vec{B}') \cdot \vec{\sigma} = \overline{(\vec{E}+i \vec{B}) \cdot \vec{\sigma}} = (-\vec{E}+i \vec{B}) \cdot \vec{\sigma}} \end{array}\]

    This relation takes into account the fact that \(\vec{E}\) is a polar and \(\vec{B}\) an axial vector.


    This page titled 5.4: On the us of Involutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by László Tisza (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.