8.3: Euclidean Domains
- Page ID
- 707
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Creating a field of fractions is one way to definitively solve the problems of division in an integral domain: Make up fractions to have an inverse for every non-zero element. But there's (sometimes) another way to define division without resorting to introducing new elements to the field, familiar from the integers: define division using a 'quotient' and a 'remainder.'
For example, among the integers we can write \(25 = 8\cdot 3+1\); then \(25/\mathord 3\) has a quotient \(8\) and remainder \(1\). Generally, to find \(n/\mathord m\), we write \(n= qm+r\), where \(0<r<|m|\). Then \(q\) is the quotient and \(r\) is the remainder.
We can do something similar with polynomials: Given two polynomials \(f\) and \(g\), we can divide \(f\) by \(g\) and uniquely write \(f=Qg+R\), where \(Q\) is a polynomial and \(R\) is a polynomial of lower degree than \(g\).
For example, take \(f=2x^5+3x^2+x+3\) and \(g=x^2+1\), we can apply the polynomial long division algorithm and get \(f= (2x^3-2x+3)g -x\). Here \(2x^3-2x+3\) is the whole part and \(-x\) is the remainder.
In both the integer division and the polynomial division, the key ingredient is a way of ordering the elements of the ring: in the integers, we order by the usual ordering of the integers, and with polynomials we order by the degree of the polynomial.
A norm on a ring \(R\) is a function \(n: R\rightarrow \mathbb{Z}_{\geq 0}\) with \(n(0)=0\). A positive norm has \(n(r)>0\) for all \(r\neq 0\).
Any given ring can have many different norms. The norm on the integers is simply the absolute value of the integer; it is a positive norm. The norm on polynomials is the degree of the polynomial.
A Euclidean domain is an integral domain \(R\) with a norm \(n\) such that for any \(a, b\in R\), there exist \(q,r\) such that \(a=q\cdot b + r\) with \(n(r)<n(b)\). The element \(q\) is called the quotient and \(r\) is the remainder.
A Euclidean domain then has the same kind of partial solution to the question of division as we have in the integers.
In fact, Euclidean domains further have a Euclidean algorithm for finding a common divisor of two elements. The Euclidean algorithm is performed by starting with two elements \(f\) and \(g\) for which we wish to find a common divisor. Dividing \(f\) by \(g\) gives a quotient \(q_0\) and a remainder \(r_0\). We then divide \(g\) by \(r_0\) and obtain a new quotinet \(q_1\) and a new remainder, \(r_1\). We then repeat this process to get quotients \(q_2, q_3, \ldots q_k\) and remainders \(r_2, r_3, \ldots r_k\). Each remainder has smaller norm than the previous, so this process must eventually terminate with some \(r_k=0\).
The final quotient, \(q_k\) divides both \(g\) and \(f\): You can see this by writing \(f=q_0g+r_0\), and then expanding \(r_0\): \(f=q_0(q_1r_0 + r_1)+r_0\). If we imagine the process ending at this point, so that \(r_1=0\), we then have \(r_0\) divides both \(f\) and \(g\). On the other hand, if the process doesn't terminate, we can expand \(r_0=q_2r_1+r_2\). Then \(f=q_0(q_1(q_2r_1+r_2) + r_1)+q_2r_1+r_2\). If the process terminates, then \(r_2=0\), and \(r_1\) divides every term, and thus divides \(f\) and \(g\). If the process doesn't terminate, we repeat the same basic argument.
(TODO: Examples in Z and Z[x])
Contributors and Attributions
- Tom Denton (Fields Institute/York University in Toronto)