Skip to main content
Mathematics LibreTexts

9.2: Linear Independence

  • Page ID
    709
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    One of the core concepts in linear algebra is linear independence, and this concept translates to general vector spaces with no difficulty.

    Definition 9.1.0

    Let \(S\) be a set with elements \(s_i\). A linear combination of elements \(\{s_1, s_2, \ldots, s_n\}\) is given by any finite sum \(\sum_{s\in S}c_s s\) with coefficients \(c_s\in k\). (If \(S\) is an infinite set, then all but finitely many \(c_s\) must be equal to \(0\).)

    Definition 9.1.1

    Let \(S\) be a set of vectors in a vector space \(V\). Then we say that \(S\) is linearly dependent if there exists a linear combination of elements of \(S\) equal to \(0\).

    Example

    Let \(\mathbb{R}^\infty\) be the vector space of sequences of elements of \(\mathbb{R}\). (ie, the space of sequences \(r=(r_1,r_2, r_3, \ldots)\), with coordinate-wise addition and the usual scalar multiplication.) Let \(r_i\in \mathbb{R}^\infty\) be the sequence with \((e_i)_i=1\) and \((e_i)_j=0\) for all \(j\neq i\). Let \(n\) be the element \((-1, -1, -1, \ldots)\). Now, let \(S\) be the set of all the \(e_i\) and \(n\). This is actually a linearly independent set. You might note that the sum of all of the elements in \(S\) (with all coefficients in the sum equal to \(1\)) seems to be the \(0\)-vector. But this is an infinite sum, and is thus not considered a linear combination of elements of \(S\).

    Contributors and Attributions

    • Tom Denton (Fields Institute/York University in Toronto)


    This page titled 9.2: Linear Independence is shared under a not declared license and was authored, remixed, and/or curated by Tom Denton.

    • Was this article helpful?