# 10.1: Prelude to Further Applications of Trigonometry

- Page ID
- 2667

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

The world’s largest tree by volume, named General Sherman, stands \(274.9\) feet tall and resides in Northern California. Just how do scientists know its true height? A common way to measure the height involves determining the angle of elevation, which is formed by the tree and the ground at a point some distance away from the base of the tree. This method is much more practical than climbing the tree and dropping a very long tape measure.

**Figure \(\PageIndex{1}\):** General Sherman, the world’s largest living tree. (credit: Mike Baird, Flickr)

In this chapter, we will explore applications of trigonometry that will enable us to solve many different kinds of problems, including finding the height of a tree. We extend topics we introduced in Trigonometric Functions and investigate applications more deeply and meaningfully.

### Contributors

- Lynn Marecek (Santa Ana College) and MaryAnne Anthony-Smith (formerly of Santa Ana College). This content produced by OpenStax and is licensed under a Creative Commons Attribution License 4.0 license.