Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

8.E: Review Exercises and Sample Exam

  • Page ID
    22223
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Review Exercises

    (Assume all variables represent nonnegative numbers.)

    Exercise \(\PageIndex{1}\) Radicals

    Simplify.

    1. \(\sqrt{36}\)
    2. \(\sqrt{425}\)
    3. \(\sqrt{−16}\)
    4. \(-\sqrt{9}\)
    5. \(\sqrt[3]{125}\)
    6. \(3\sqrt[3]{−8}\)
    7. \(\sqrt[3]{\frac{1}{64}}\)
    8. \(−5\sqrt[3]{−27}\)
    9. \(\sqrt{40}\)
    10. \(−3\sqrt{50}\)
    11. \(\sqrt{\frac{98}{81}}\)
    12. \(\sqrt{\frac{11}{21}}\)
    13. \(5\sqrt[3]{192}\)
    14. \(2\sqrt[3]{−54}\)
    Answer

    1. 6

    3. Not a real number

    5. 5

    7. \(\frac{1}{4}\)

    9. \(2\sqrt{10}\)

    11. \(\frac{7 \sqrt{2}}{9}\)

    13. \(20\sqrt[3]{3}\)

    Exercise \(\PageIndex{2}\) Simplifying Radical Expressions

    Simplify.

    1. \(\sqrt{49x^{2}}\)
    2. \(\sqrt{25a^{2}b^{2}}\)
    3. \(\sqrt{75x^{3}y^{2}}\)
    4. \(\sqrt{200m^{4}n^{3}}\)
    5. \(\sqrt{\frac{18 x^{3}}{25 y^{2}}}\)
    6. \(\sqrt{\frac{108 x^{3}}{49 y^{4}}}\)
    7. \(\sqrt[3]{216 x^{3}}\)
    8. \(\sqrt[3]{−125x^{6}y^{3}}\)
    9. \(\sqrt[3]{27a^{7}b^{5}c^{3}}\)
    10. \(\sqrt[3]{120x^{9}y^{4}}\)
    Answer

    1. \(7x\)

    3. 5xy\(\sqrt{3x}\) 

    5. \(\frac{3x\sqrt{2x}}{5y}\) 

    7. \(6x\) 

    9. \(3a^{2}bc\sqrt[3]{ab^{2}}\)

    Exercise \(\PageIndex{3}\) Simplifying Radical Expressions

    Use the distance formula to calculate the distance between the given two points.

    1. \((5, −8)\) and \((2, −10)\)
    2. \((−7, −1)\) and \((−6, 1)\)
    3. \((−10, −1)\) and \((0, −5)\)
    4. \((5, −1)\) and \((−2, −2)\)
    Answer

    1. \(\sqrt{13}\)

    3. \(2\sqrt{29}\)

    Exercise \(\PageIndex{4}\) Adding and Subtracting Radical Expressions

    Simplify.

    1. \(8\sqrt{3}+3\sqrt{3}\)
    2. \(12\sqrt{10}−2\sqrt{10}\)
    3. \(14\sqrt{3}+5\sqrt{2}−5\sqrt{3}−6\sqrt{2}\)
    4. \(22\sqrt{ab}−5\sqrt{ab}+7\sqrt{ab}−2\sqrt{ab}\)
    5. \(7\sqrt{x}−(3\sqrt{x}+2\sqrt{y})\)
    6. \((8y\sqrt{x}−7x\sqrt{y})−(5x\sqrt{y}−12y\sqrt{x})\)
    7. \(\sqrt{45}+\sqrt{12}−\sqrt{20}−\sqrt{75}\)
    8. \(\sqrt{24}−\sqrt{32}+\sqrt{54}−2\sqrt{32}\)
    9. \(2 \sqrt{3 x^{2}}+\sqrt{45 x}-x \sqrt{27}+\sqrt{20 x}\)
    10. \(\sqrt{56a^{2}b}+\sqrt{8a^{2}b^{2}}−\sqrt{224a^{2}b}−a\sqrt{18b^{2}}\)
    11. \(5y\sqrt{4x^{2}y}−(x\sqrt{16y^{3}}−2\sqrt{9x^{2}y^{3}})\)
    12. \((2b\sqrt{9a^{2}c}−3a\sqrt{16b^{2}c})−(\sqrt{64a^{2}b^{2}c}−9b\sqrt{a^{2}c})\)
    13. \(\sqrt[3]{216x}−\sqrt[3]{125xy}−\sqrt[3]{8x}\)
    14. \(\sqrt[3]{128x^{3}}−2x\sqrt[3]{54}+3\sqrt[3]{2x^{3}}\)
    15. \(\sqrt[3]{8x^{3}y}−2x\sqrt[3]{8y}+\sqrt[3]{27x^{3}y}+x\sqrt[3]{y}\)
    16. \(\sqrt[3]{27a^{3}b}−3\sqrt[3]{8ab^{3}}+a\sqrt[3]{64b}−b\sqrt[3]{a}\)
    Answer

    1. \(11\sqrt{3}\)

    3. \(9 \sqrt{3}-\sqrt{2}\)

    5. \(4 \sqrt{x}-2 \sqrt{y}\)

    7.\(\sqrt{5}-3 \sqrt{3}\)

    9. \(-\sqrt{3} x+5 \sqrt{5} \sqrt{x}\)

    11. \(12xy\sqrt{y}\)

    13. \(4 \sqrt[3]{x}-5 \sqrt[3]{x y}\)

    15. \(2 x \sqrt[3]{y}\)

    Exercise \(\PageIndex{5}\) Multiplying and Dividing Radical Expressions

    Multiply.

    1. \(\sqrt{3}\cdot\sqrt{6}\)
    2. \((3\sqrt{5})^{2}\)
    3. \(\sqrt{2}(\sqrt{3}−\sqrt{6})\)
    4. \((\sqrt{2}−\sqrt{6})^{2}\)
    5. \((1−\sqrt{5})(1+\sqrt{5})\)
    6. \((2\sqrt{3}+\sqrt{5})(3\sqrt{2}−2\sqrt{5})\)
    7. \(\sqrt[3]{2a^{2}}\cdot\sqrt[3]{4a}\)
    8. \(\sqrt[3]{25a^{2}b}\cdot\sqrt[3]{5a^{2}b^{2}}\)
    Answer

    1. \(3\sqrt{2}\)

    3. \(\sqrt{6}-2 \sqrt{3}\)

    5. \(−4\) 

    7. \(2a\)

    Exercise \(\PageIndex{6}\) Multiplying and Dividing Radical Expressions

    Divide.

    1. \(\frac{\sqrt{72}}{\sqrt{4}}\)
    2. \(10 \frac{\sqrt{48}}{\sqrt{64}}\)
    3. \(\frac{\sqrt{98 x^{4} y^{2}}}{\sqrt{36 x^{2}}}\)
    4. \(\frac{\sqrt[3]{81 x^{6} y^{7}}}{\sqrt[3]{8 y^{3}}}\)
    Answer

    1. \(3\sqrt{2}\) 

    3. \(\frac{7xy \sqrt{2}}{6}\)

    Exercise \(\PageIndex{7}\) Multiplying and Dividing Radical Expressions

    Rationalize the denominator.

    1. \(\frac{2}{\sqrt{7}}\)
    2. \(\frac{\sqrt{6}}{\sqrt{3}}\)
    3. \(\sqrt{\frac{14}{2 x}}\)
    4. \(\sqrt{\frac{12}{15}}\)
    5. \(\sqrt[3]{\frac{1}{2 x^{2}}}\)
    6. \(\sqrt[3]{\frac{5 a^{2} b^{5}}{a b^{2}}}\)
    7. \(\frac{1}{\sqrt{3}-\sqrt{2}}\)
    8. \(\frac{\sqrt{2}-\sqrt{6}}{\sqrt{2}+\sqrt{6}}\)
    Answer

    1. \(\frac{2 \sqrt{7}}{7}\)

    3. \(\frac{\sqrt{7} \sqrt{x}}{x}\)

    5. \(\frac{2^{\frac{2}{3}} \sqrt[3]{x}}{2 x}\)

    7. \(\sqrt{3}+\sqrt{2}\)

    Exercise \(\PageIndex{8}\) Rational Exponents

    Express in radical form.

    1. \(7^{1/2}\)
    2. \(3^{2/3}\)
    3. \(x^{4/5}\)
    4. \(y^{−3/4}\)
    Answer

    1. \(\sqrt{7}\)

    3. \(\sqrt[5]{x^{4}}\)

    Exercise \(\PageIndex{9}\)Rational Exponents

    Write as a radical and then simplify.

    1. \(4^{1/2}\)
    2. \(50^{1/2}\)
    3. \(4^{2/3}\)
    4. \(81^{1/3}\)
    5. \((\frac{1}{4})^{3/2}\)
    6. \((\frac{12}{16})^{−1/3}\)
    Answer

    1. \(2\)

    3. \(2\sqrt[3]{2}\)

    5. \(\frac{1}{8}\)

    Exercise \(\PageIndex{10}\) Rational Exponent

    Perform the operations and simplify. Leave answers in exponential form.

    1. \(3^{1/2}\cdot 3^{3/2}\)
    2. \(2^{1/2}\cdot 2^{1/3}\)
    3. \(\frac{4^{\frac{3}{2}}}{4^{\frac{1}{2}}}\)
    4. \(\frac{9^{\frac{3}{4}}}{9^{\frac{1}{4}}}\)
    5. \(\left(36 x^{4} y^{2}\right)^{\frac{1}{2}}\)
    6. \((8x^{6}y^{9})^{1/3}\) 
    7. \(\left(\frac{a^{\frac{4}{3}}}{a^{\frac{1}{2}}}\right)^{\frac{2}{5}}\)
    8. \(\left(\frac{16 x^{\frac{4}{3}}}{y^{2}}\right)^{\frac{1}{2}}\)
    Answer

    1. \(9\) 

    3. \(4\)

    5. \(6x^{2}y\)

    7. \(a^{1/3}\)

    Exercise \(\PageIndex{11}\) Solving Radical Equations

    Solve.

    1. \(\sqrt{x}=5\)
    2. \(\sqrt{2x−1}=3\)
    3. \(\sqrt{x−8}+2=5\)
    4. \(\sqrt{3x−5}−1=11\)
    5. \(\sqrt{5x−3}=\sqrt{2x+15}\)
    6.  \(\sqrt{8x−15}=x\)
    7. \(\sqrt{x+41}=x−1\)
    8. \(\sqrt{7−3x}=x−3\)
    9. \(2(x+1)=\sqrt{2(x+1)}\)
    10. \(\sqrt{x(x+6)}=4\)
    11. \(\sqrt[3]{x(3x+10)}=2\)
    12. \(\sqrt[3]{2x^{2}−x}+4=5\)
    13. \(\sqrt[3]{3(x+4)(x+1)}=\sqrt[3]{5x+37}\)
    14. \(\sqrt[3]{3x^{2}−9x+24}=\sqrt[3]{(x+2)^{2}}\)
    15. \(y^{1/2}−3=0\)
    16. \(y^{1/3}+3=0\)
    17. \((x−5)^{1/2}−2=0\)
    18. \((2x−1)^{1/3}−5=0\)
    Answer

    1. \(25\)

    3. \(17\)

    5. \(6\)

    7. \(8\)

    9. \(−\frac{1}{2}, −1\)

    11. \(\frac{2}{3}, −4\)

    13. \(−5, \frac{5}{3}\)

    15. \(9\)

    17. \(9\)

    Sample Exam

    In Exercises 12-16, assume all variables represent nonnegative numbers.

    Exercise \(\PageIndex{12}\)

    Simplify.

    1.  
      1. \(\sqrt{100}\)
      2. \(\sqrt{-100}\)
      3. \(-\sqrt{100}\)
    Answer

    1. a. 10     b. Not a real number     c. -10

    Exercise \(\PageIndex{13}\)

    Simplify.

    1. g
      1. \(\sqrt[3]{27}\)
      2. \(\sqrt[3]{-27}\)
      3. \(-\sqrt[3]{27}\)
    2. \(\sqrt{\frac{128}{25}}\)
    3. \(\sqrt[3]{\frac{192}{125}}\)
    4. \(5 \sqrt{12 x^{2} y^{3} z}\)
    5. \(2 \sqrt[3]{50 x^{2} y^{3} z^{5}}\)
    Answer

    2. \(\frac{8 \sqrt{2}}{5}\)

    4. \(10xy\sqrt{3yz}\)

    Exercise \(\PageIndex{14}\)

    Perform the operations.

    1. \(5 \sqrt{24}-\sqrt{108}+\sqrt{96}-3 \sqrt{27}\) 
    2. \(3 \sqrt{8 x^{2} y}-\left(x \sqrt{200 y}-\sqrt{18 x^{2} y}\right)\)
    3. \(2 \sqrt{a b} \cdot(3 \sqrt{2 a}-\sqrt{b})\)
    4. \((\sqrt{x}−\sqrt{2y})^{2}\)
    Answer

    1. \(14 \sqrt{6}-15 \sqrt{3}\)

    3. \(6a\sqrt{2b}−2b\sqrt{a}\)

    Exercise \(\PageIndex{15}\)

    Rationalize the denominator.

    1. \(\frac{10}{\sqrt{2 x}}\)
    2. \(\sqrt[3]{\frac{1}{4 x y^{2}}}\)
    3. \(\frac{1}{\sqrt{x}+5}\)
    4. \(\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\)
    Answer

    1. \(\frac{5 \sqrt{2x}}{x}\)

    3. \(\frac{\sqrt{x}-5}{x-25}\)

    Exercise \(\PageIndex{16}\)

    Perform the operations and simplify. Leave answers in exponential form.

    1. \(2^{\frac{2}{3}} \cdot 2^{\frac{1}{6}}\)
    2. \(\frac{10^{\frac{4}{5}}}{10^{\frac{1}{3}}}\)
    3. \(\left(121 a^{4} b^{2}\right)^{\frac{1}{2}}\)
    4. \(\frac{\left(9 y^{\frac{1}{3}} x^{6}\right)^{\frac{1}{2}}}{y^{\frac{1}{6}}}\)
    Answer

    1. \(2^{5/6}\)

    3. \(11a^{2}b\)

    Exercise \(\PageIndex{17}\)

    Solve.

    1. \(\sqrt{x}-7=0\)
    2. \(\sqrt{3x+5}=1\)
    3. \(\sqrt{2x−1}+2=x\)
    4. \(3\sqrt{1−10x}=x−4\)
    5. \(\sqrt{(2x+1)(3x+2)}=\sqrt{3(2x+1)}\)
    6. \(\sqrt[3]{x(2x−15)}=3\)
    7. The period, T, of a pendulum in seconds is given the formula \(T=2π\sqrt{L/32}\) , where L represents the length in feet. Calculate the length of a pendulum if the period is \(1^{1/2}\) seconds. Round off to the nearest tenth.
    Answer

    1. 49

    3. 5

    5. \(-\frac{1}{2}, \frac{1}{3}\)

    7. 1.8 feet