Skip to main content
Mathematics LibreTexts

4: Systems of Linear Equations

  • Page ID
    19876
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    • 4.1: Solving Systems by Graphing
      In this section we introduce a graphical technique for solving systems of two linear equations in two unknowns. As we saw in the previous chapter, if a point satisfies an equation, then that point lies on the graph of the equation. If we are looking for a point that satisfies two equations, then we are looking for a point that lies on the graphs of both equations; that is, we are looking for a point of intersection.
    • 4.2: Solving Systems by Substitution
      In this section we introduce an algebraic technique for solving systems of two equations in two unknowns called the substitution method. The substitution method is fairly straightforward to use. First, you solve either equation for either variable, then substitute the result into the other equation. The result is an equation in a single variable. Solve that equation, then substitute the result into any of the other equations to find the remaining unknown variable.
    • 4.3: Solving Systems by Elimination
      When both equations of a system are in standard form Ax+By=C , then a process called elimination is usually the best procedure to use to find the solution of the system.
    • 4.4: Applications of Linear Systems
      In this section we create and solve applications that lead to systems of linear equations. As we create and solve our models, we’ll follow the Requirements for Word Problem Solutions from Chapter 2, Section 5. However, instead of setting up a single equation, we set up a system of equations for each application.
    • 4.E: Systems of Linear Equations (Exercises)


    This page titled 4: Systems of Linear Equations is shared under a CC BY-NC-ND 3.0 license and was authored, remixed, and/or curated by David Arnold via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.