$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 1.6E: Exercises

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

#### Practice Makes Perfect

Use the Commutative and Associative Properties

In the following exercises, simplify.

1. $$43m+(−12n)+(−16m)+(−9n)$$

$$27m+(−21n)$$

2. $$−22p+17q+(−35p)+(−27q)$$

3. $$\frac{3}{8}g+\frac{1}{12}h+\frac{7}{8}g+\frac{5}{12}h$$

$$\frac{5}{4}g+\frac{1}{2}h$$

4. $$\frac{5}{6}a+\frac{3}{10}b+\frac{1}{6}a+\frac{9}{10}b$$

5. $$6.8p+9.14q+(−4.37p)+(−0.88q)$$

$$2.43p+8.26q$$

6. $$9.6m+7.22n+(−2.19m)+(−0.65n)$$

7. $$−24·7·\frac{3}{8}$$

$$−63$$

8. $$−36·11·\frac{4}{9}$$

9. $$\left(\frac{5}{6}+\frac{8}{15}\right)+\frac{7}{15}$$

$$1\frac{5}{6}$$

10. $$\left(\frac{11}{12}+\frac{4}{9}\right)+\frac{5}{9}$$

11. $$17(0.25)(4)$$

$$17$$

12. $$36(0.2)(5)$$

13. $$[2.48(12)](0.5)$$

$$14.88$$

14. $$[9.731(4)](0.75)$$

15. $$12\left(\frac{5}{6}p\right)$$

$$10p$$

16. $$20\left(\frac{3}{5}q\right)$$

Use the Properties of Identity, Inverse and Zero

In the following exercises, simplify.

17. $$19a+44−19a$$

$$44$$

18. $$27c+16−27c$$

19. $$\frac{1}{2}+\frac{7}{8}+\left(−\frac{1}{2}\right)$$

$$\frac{7}{8}$$

20. $$\frac{2}{5}+\frac{5}{12}+\left(−\frac{2}{5}\right)$$

21. $$10(0.1d)$$

$$d$$

22. $$100(0.01p)$$

23. $$\frac{3}{20}·\frac{49}{11}·\frac{20}{3}$$

$$\frac{49}{11}$$

24. $$\frac{13}{18}·\frac{25}{7}·\frac{18}{13}$$

25. $$\frac{0}{u−4.99}$$, where $$u\neq 4.99$$

$$0$$

26. $$0÷(y−\frac{1}{6})$$, where $$x \neq 16$$

27. $$\frac{32−5a}{0}$$, where $$32−5a\neq 0$$

undefined

28. $$\frac{28−9b}{0}$$, where $$28−9b\neq 0$$

29. $$\left(\frac{3}{4}+\frac{9}{10}m\right)÷0$$, where $$\frac{3}{4}+\frac{9}{10}m\neq 0$$

undefined

30. $$\left(\frac{5}{16}n−\frac{3}{7}\right)÷0$$, where $$\frac{5}{16}n−\frac{3}{7}\neq 0$$

Simplify Expressions Using the Distributive Property

In the following exercises, simplify using the Distributive Property.

31. $$8(4y+9)$$

$$32y+72$$

32. $$9(3w+7)$$

33. $$6(c−13)$$

$$6c−78$$

34. $$7(y−13)$$

35. $$\frac{1}{4}(3q+12)$$

$$\frac{3}{4}q+3$$

36. $$\frac{1}{5}(4m+20)$$

37. $$9(\frac{5}{9}y−\frac{1}{3})$$

$$5y−3$$

38. $$10(\frac{3}{10}x−\frac{2}{5})$$

39. $$12(\frac{1}{4}+\frac{2}{3}r)$$

$$3+8r$$

40. $$12(\frac{1}{6}+\frac{3}{4}s)$$

41. $$15⋅\frac{3}{5}(4d+10)$$

$$36d+90$$

42. $$18⋅\frac{5}{6}(15h+24)$$

43. $$r(s−18)$$

$$rs−18r$$

44. $$u(v−10)$$

45. $$(y+4)p$$

$$yp+4p$$

46. $$(a+7)x$$

47. $$−7(4p+1)$$

$$−28p−7$$

48. $$−9(9a+4)$$

49. $$−3(x−6)$$

$$−3x+18$$

50. $$−4(q−7)$$

51. $$−(3x−7)$$

$$−3x+7$$

52. $$−(5p−4)$$

53. $$16−3(y+8)$$

$$−3y−8$$

54. $$18−4(x+2)$$

55. $$4−11(3c−2)$$

$$−33c+26$$

56. $$9−6(7n−5)$$

57. $$22−(a+3)$$

$$−a+19$$

58. $$8−(r−7)$$

59. $$(5m−3)−(m+7)$$

$$4m−10$$

60. $$(4y−1)−(y−2)$$

61. $$9(8x−3)−(−2)$$

$$72x−25$$

62. $$4(6x−1)−(−8)$$

63. $$5(2n+9)+12(n−3)$$

$$22n+9$$

64. $$9(5u+8)+2(u−6)$$

65. $$14(c−1)−8(c−6)$$

$$6c+34$$

66. $$11(n−7)−5(n−1)$$

67. $$6(7y+8)−(30y−15)$$

$$12y+63$$

68. $$7(3n+9)−(4n−13)$$

#### Writing Exercises

70. What is the difference between the additive inverse and the multiplicative inverse of a number

71. Simplify $$8(x−\frac{1}{4})$$ using the Distributive Property and explain each step.

72. Explain how you can multiply $$4(5.97)$$ without paper or calculator by thinking of $$5.97$$ as $$6−0.03$$ and then using the Distributive Property.

## Self Check

a. After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

b. After reviewing this checklist, what will you do to become confident for all objectives?