Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
[ "article:topic", "license:ccby", "showtoc:no", "authorname:openstaxmarecek" ]
Mathematics LibreTexts

2.0: Prelude to Solving Linear Equations

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Imagine being a pilot, but not just any pilot—a drone pilot. Drones, or unmanned aerial vehicles, are devices that can be flown remotely. They contain sensors that can relay information to a command center where the pilot is located. Larger drones can also carry cargo. In the near future, several companies hope to use drones to deliver materials and piloting a drone will become an important career. Law enforcement and the military are using drones rather than send personnel into dangerous situations.

    Figure 1. This drone is flying high in the sky while its pilot remains safely on the ground. (credit: “Unsplash” / Pixabay)
    Building and piloting a drone requires the ability to program a set of actions, including taking off, turning, and landing. This, in turn, requires the use of linear equations. In this chapter, you will explore linear equations, develop a strategy for solving them, and relate them to real-world situations.