3.5: Subtraction of Signed Numbers
- Page ID
- 49358
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Overview
- Definition of Subtraction
- Subtraction of Signed Numbers
Definition of Subtraction
We know from our experience with arithmetic that the subtraction \(5−2\) produces \(3\), that is, \(5−2=3\). Illustrating this process on the number line suggests a rule for subtracting signed numbers.
We begin at \(0\), the origin.
Since \(5\) is positive, we move \(5\) units to the right.
Then, we move 2 units to the left to get to \(3\). (This reminds us of addition with a negative number.)
This illustration suggests that \(5−2\) is the same as \(5+(−2)\).
This leads us directly to the definition of subtraction.
If \(a\) and \(b\) are real numbers, \(a−b\) is the same as \(a+(−b)\), where \(−b\) is the opposite of \(b\).
Subtraction of Signed Numbers
The preceding definition suggests the rule for subtracting signed numbers.
To perform the subtraction \(a−b\), add the opposite of \(b\) to \(a\), that is, change the sign of \(b\) and add.
Sample Set A
Perform the subtractions.
\(5−3=5+(−3)=2\)
\(4−9=4+(−9)=−5\)
\(−4−6=−4+(−6)=−10\)
\(−3−(−12)=−3+12=9\)
\(0−(−15)=0+15=15\)
The high temperature today in Lake Tahoe was 26F. The low temperature tonight is expected to be −7F. How many degrees is the temperature expected to drop?
We need to find the difference between 26 and −7.
\(26−(−7)=26+7=33\)
Thus, the expected temperature drop is 33F.
\(\begin{aligned}
-6-(-5)-10 &=-6+5+(-10) \\
&=(-6+5)+(-10) \\
&=-1+(-10) \\
&=-11
\end{aligned}\)
Practice Set A
Perform the subtractions.
\(9−6\)
- Answer
-
\(3\)
\(6-9\)
- Answer
-
\(-3\)
\(0-7\)
- Answer
-
\(-7\)
\(1-14\)
- Answer
-
\(-13\)
\(-8-12\)
- Answer
-
\(-20\)
\(-21-6\)
- Answer
-
\(-27\)
\(-6-(-4)\)
- Answer
-
\(-2\)
\(8-(-10)\)
- Answer
-
\(18\)
\(1-(-12)\)
- Answer
-
\(13\)
\(86-(-32)\)
- Answer
-
\(118\)
\(0-16\)
- Answer
-
\(-16\)
\(0-(-16)\)
- Answer
-
\(16\)
\(0-(8)\)
- Answer
-
\(-8\)
\(5-(-5)\)
- Answer
-
\(10\)
\(24-(-(-24))\)
- Answer
-
\(0\)
Exercises
For the following exercises, perform the indicated operations.
\(8-3\)
- Answer
-
\(5\)
\(12 - 7\)
- Answer
-
\(5\)
\(5-6\)
- Answer
-
\(-1\)
\(14 - 30\)
\(2 - 15\)
- Answer
-
\(-13\)
\(5 - 18\)
- Answer
-
\(-13\)
\(1 - 7\)
- Answer
-
\(-6\)
\(4 - 11\)
\(-6 - 5\)
- Answer
-
\(-11\)
\(-8 - 14\)
\(-1 - 12\)
- Answer
-
\(-13\)
\(-4 - 4\)
\(-6 - 8\)
- Answer
-
\(-14\)
\(-1 - 12\)
- Answer
-
\(-13\)
\(-5 - (-3)\)
- Answer
-
\(-2\)
\(-11 - (-8)\)
\(-7 -(-12)\)
- Answer
-
\(5\)
\(-2 -(-10)\)
\(-4 -(-15)\)
- Answer
-
\(11\)
\(-11 -(-16)\)
\(-1 -(-6)\)
- Answer
-
\(5\)
\(-8 -(-14)\)
\(-15 -(-10)\)
- Answer
-
\(-5\)
\(-11 -(-4)\)
\(-16 -(-8)\)
- Answer
-
\(-8\)
\(-12 -(-11)\)
\(0 - 6\)
- Answer
-
\(-6\)
\(0 - 15\)
\(0 - (-7)\)
- Answer
-
\(7\)
\(0 - (-10)\)
\(67 - 38\)
- Answer
-
\(29\)
\(142 - 85\)
\(816 - 1140\)
- Answer
-
\(-324\)
\(105-421\)
\(-550 - (-121)\)
- Answer
-
\(-429\)
\(−15.016−(4.001)\)
\(−26+7−52\)
- Answer
-
\(-71\)
\(−15−21−(−2)\)
\(−104−(−216)−(−52)\)
- Answer
-
\(164\)
\(−0.012−(−0.111)−(0.035)\)
\([5+(−6)]−[2+(−4)]\)
- Answer
-
\(1\)
\([2+(−8)]−[5+(−7)]\)
\([4+(−11)]−[2+(−10)]\)
- Answer
-
\(1\)
\([9+(−6)]−[4+(−12)]\)
\((11−8)−(1−6)\)
- Answer
-
\(8\)
\((5−12)−(4−10)\)
\((1−10)−(2−15)\)
- Answer
-
\(4\)
\((0−8)−(4−12)\)
\((−4+7)−(2−5)\)
- Answer
-
\(6\)
\((−6+2)−(5−11)\)
\([−8+(−5+3)]−[9−(−3−5)]\)
- Answer
-
\(-27\)
\([−4+(−1+6)]−[7−(−6−1)]\)
\([2−(−6+10)]−[1−(2−11)]\)
- Answer
-
\(-12\)
\([5−(−2−5)]−[2−(−1−4)]\)
When a particular machine is operating properly, its meter will read 34. If a broken bearing in the machine causes the meter reading to drop by 45 units, what is the meter reading?
- Answer
-
\(-11\)
The low temperature today in Denver was −4F and the high was 42F. What is the temperature difference?
Exercises for Review
Use the distributive property to expand \(4x(5y+11)\)
- Answer
-
\(20xy + 44x\)
Simplify \(\dfrac{2(3x^2y^2)^3(2x^4y^3)^0}{27x^4y^3}\). Assume \(x \not = 0\), \(y \not = 0\)
Simplify \(|-(4^2+2^2-3^2)|\).
- Answer
-
\(11\)
Find the sum. \(-8 + (-14)\)
Find the sum. \(3 + (-6)\).
- Answer
-
\(-3\)