Skip to main content
Mathematics LibreTexts

5.11: Proficiency Exam

  • Page ID
    58543
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Proficiency Exam

    Solve the equations and inequalities for the following problems.

    Exercise \(\PageIndex{1}\)

    \(x+8=14\)

    Answer

    \(x=6\)

    Exercise \(\PageIndex{2}\)

    \(6a+3=−10\)

    Answer

    \(a = \dfrac{-13}{6}\)

    Exercise \(\PageIndex{3}\)

    \(\dfrac{-3a}{8} = 6\)

    Answer

    \(a=−16\)

    Exercise \(\PageIndex{4}\)

    \(\dfrac{x}{-2} + 16 = 11\)

    Answer

    \(x=10\)

    Exercise \(\PageIndex{5}\)

    \(\dfrac{y-9}{4} + 6 = 3\)

    Answer

    \(y=−3\)

    Exercise \(\PageIndex{6}\)

    \(5b−8=7b+12\)

    Answer

    \(b=−10\)

    Exercise \(\PageIndex{7}\)

    \(3(2a+4)=2(a+3)\)

    Answer

    \(a = -\dfrac{3}{2}\)

    Exercise \(\PageIndex{8}\)

    \(5(y+3)−(2y−1)=−5\)

    Answer

    \(y=−7\)

    Exercise \(\PageIndex{9}\)

    \(\dfrac{-(4x+3-5x)}{3} = 2\)

    Answer

    \(x=9\)

    Exercise \(\PageIndex{10}\)

    Solve \(2p−6q+1=−2\) for \(p\).

    Answer

    \(p = \dfrac{6q-3}{2}\)

    Exercise \(\PageIndex{11}\)

    Solve \(p = \dfrac{nRT}{V}\) for \(T\)

    Answer

    \(T = \dfrac{Vp}{nR}\)

    Exercise \(\PageIndex{12}\)

    \(a−8≥4\)

    Answer

    \(a≥12\)

    Exercise \(\PageIndex{13}\)

    \(−3a+1<−5\)

    Answer

    \(a>2\)

    Exercise \(\PageIndex{14}\)

    \(−2(a+6)≤−a+11\)

    Answer

    \(a≥−23\)

    Exercise \(\PageIndex{15}\)

    \(\dfrac{-4x-3}{3} > -9\)

    Answer

    \(x<6\)

    Translate the phrases or sentences into mathematical expressions or equations for the following problems.

    Exercise \(\PageIndex{16}\)

    Three added to twice a number.

    Answer

    \(3+2a\)

    Exercise \(\PageIndex{17}\)

    Eight less than two thirds of a number.

    Answer

    \(\dfrac{2}{3}x - 8\)

    Exercise \(\PageIndex{18}\)

    Two more than four times a number.

    Answer

    \(2+4x\)

    Exercise \(\PageIndex{19}\)

    A number is added to itself and this result is multiplied by the original number cubed. The result is twelve.

    Answer

    \(2x(x^3) = 12\)

    Exercise \(\PageIndex{20}\)

    A number is decreased by five and that result is divided by ten more than the original number. The result is six times the original number.

    Answer

    \(\dfrac{x-5}{x+10} = 6x\)

    Solve the following problems.

    Exercise \(\PageIndex{21}\)

    Eight percent of a number is 1.2. What is the number?

    Answer

    \(x=15\)

    Exercise \(\PageIndex{22}\)

    Three consecutive odd integers sum to 38. What are they?

    Answer

    There are no three consecutive odd integers that add to 38.

    Exercise \(\PageIndex{23}\)

    Five more than three times a number is strictly less than seventeen. What is the number?

    Answer

    \(x<4\)

    Exercise \(\PageIndex{24}\)

    Solve \(y=8x−11\) for \(y\) if \(x=3\), and write the solution as an ordered pair.

    Answer

    \((3,13)\)


    This page titled 5.11: Proficiency Exam is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Denny Burzynski & Wade Ellis, Jr. (OpenStax CNX) .

    • Was this article helpful?