4.2E: Exercises
- Page ID
- 30120
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Practice Makes Perfect
Recognize the Relationship Between the Solutions of an Equation and its Graph
In the following exercises, for each ordered pair, decide:
- Is the ordered pair a solution to the equation?
- Is the point on the line?
y=x+2
- (0,2)
- (1,2)
- (−1,1)
- (−3,−1)
- Answer
-
- yes; no
- no; no
- yes; yes
- yes; yes
y=x−4
- (0,−4)
- (3,−1)
- (2,2)
- (1,−5)
\(y=\frac{1}{2} x-3\)
- (0,−3)
- (2,−2)
- (−2,−4)
- (4,1)
- Answer
-
- yes; yes
- yes; yes
- yes; yes
- no; no
\(y=\frac{1}{3} x+2\)
- (0,2)
- (3,3)
- (−3,2)
- (−6,0)
Graph a Linear Equation by Plotting Points
In the following exercises, graph by plotting points.
\(y=3 x-1\)
- Answer
\(y=2 x+3\)
\(y=-2 x+2\)
- Answer
\(y=-3 x+1\)
\(y=x+2\)
- Answer
\(y=x-3\)
\(y=-x-3\)
- Answer
\(y=-x-2\)
\(y=2 x\)
- Answer
\(y=3 x\)
\(y=-4 x\)
- Answer
\(y=-2 x\)
\(y=\frac{1}{2} x+2\)
- Answer
\(y=\frac{1}{3} x-1\)
\(y=\frac{4}{3} x-5\)
- Answer
\(y=\frac{3}{2} x-3\)
\(y=-\frac{2}{5} x+1\)
- Answer
\(y=-\frac{4}{5} x-1\)
\(y=-\frac{3}{2} x+2\)
- Answer
\(y=-\frac{5}{3} x+4\)
\(x+y=6\)
- Answer
\(x+y=4\)
\(x+y=-3\)
- Answer
\(x+y=-2\)
\(x-y=2\)
- Answer
\(x-y=1\)
\(x-y=-1\)
- Answer
\(x-y=-3\)
\(3 x+y=7\)
- Answer
\(5x+y=6\)
2x+y=−3
- Answer
\(4x+y=−5\)
\(\frac{1}{3} x+y=2\)
- Answer
\(\frac{1}{2} x+y=3\)
\(\frac{2}{5} x-y=4\)
- Answer
\(\frac{3}{4} x-y=6\)
\(2 x+3 y=12\)
- Answer
4x+2y=12
3x−4y=12
- Answer
2x−5y=10
x−6y=3
- Answer
x−4y=2
5x+2y=4
- Answer
3x+5y=5
Graph Vertical and Horizontal Lines
In the following exercises, graph each equation.
x=4
- Answer
x=3
x=−2
- Answer
x=−5
y=3
- Answer
y=1
y=−5
- Answer
y=−2
\(x=\frac{7}{3}\)
- Answer
\(x=\frac{5}{4}\)
\(y=-\frac{15}{4}\)
- Answer
\(y=-\frac{5}{3}\)
In the following exercises, graph each pair of equations in the same rectangular coordinate system.
y=2x and y=2
- Answer
y=5x and y=5
\(y=-\frac{1}{2} x\) and \(y=-\frac{1}{2}\)
- Answer
\(y=-\frac{1}{3} x\) and \(y=-\frac{1}{3}\)
Mixed Practice
In the following exercises, graph each equation.
y=4x
- Answer
y=2x
\(y=-\frac{1}{2} x+3\)
- Answer
\(y=\frac{1}{4} x-2\)
y=−x
- Answer
y=x
x−y=3
- Answer
x+y=−5
4x+y=2
- Answer
2x+y=6
y=−1
- Answer
y=5
2x+6y=12
- Answer
5x+2y=10
x=3
- Answer
x=−4
Everyday Math
Motor home cost. The Robinsons rented a motor home for one week to go on vacation. It cost them $594 plus $0.32 per mile to rent the motor home, so the linear equation y=594+0.32x gives the cost, yy, for driving xx miles. Calculate the rental cost for driving 400, 800, and 1200 miles, and then graph the line.
- Answer
-
$722, $850, $978
Weekly earnings. At the art gallery where he works, Salvador gets paid $200 per week plus 15% of the sales he makes, so the equation y=200+0.15x gives the amount, yy, he earns for selling x dollars of artwork. Calculate the amount Salvador earns for selling $900, $1600, and $2000, and then graph the line.
Writing Exercises
Explain how you would choose three \(x\) - values to make a table to graph the line \(y=\frac{1}{5} x-2\)
- Answer
-
Answers will vary.
What is the difference between the equations of a vertical and a horizontal line?
Self Check
ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.
ⓑ After reviewing this checklist, what will you do to become confident for all goals?