10.3E: Exercises
- Page ID
- 30285
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Practice Makes Perfect
Solve Quadratic Equations Using the Quadratic Formula
In the following exercises, solve by using the Quadratic Formula.
\(4m^2+m−3=0\)
- Answer
-
\(m=−1\), \(m=\frac{3}{4}\)
\(4n^2−9n+5=0\)
\(2p^2−7p+3=0\)
- Answer
-
\(p=\frac{1}{2}\), \(p=3\)
\(3q^2+8q−3=0\)
\(p^2+7p+12=0\)
- Answer
-
\(p=−4\), \(p=−3\)
\(q^2+3q−18=0\)
\(r^2−8r−33=0\)
- Answer
-
\(r=−3\), \(r=11\)
\(t^2+13t+40=0\)
\(3u^2+7u−2=0\)
- Answer
-
\(u=\frac{−7\pm\sqrt{73}}{6}\)
\(6z^2−9z+1=0\)
\(2a^2−6a+3=0\)
- Answer
-
\(a=\frac{3\pm\sqrt{3}}{2}\)
\(5b^2+2b−4=0\)
\(2x^2+3x+9=0\)
- Answer
-
no real solution
\(6y^2−5y+2=0\)
\(v(v+5)−10=0\)
- Answer
-
\(v=\frac{−5\pm\sqrt{65}}{2}\)
\(3w(w−2)−8=0\)
\(\frac{1}{3}m^2+\frac{1}{12}m=\frac{1}{4}\)
- Answer
-
\(m=−1\), \(m=\frac{3}{4}\)
\(\frac{1}{3}n^2+n=−\frac{1}{2}\)
\(16c^2+24c+9=0\)
- Answer
-
\(c=−\frac{3}{4}\)
\(25d^2−60d+36=0\)
5m^2+2m−7=0
- Answer
-
\(m=−\frac{7}{5}\), \(m=1\)
\(8n^2−3n+3=0\)
\(p^2−6p−27=0\)
- Answer
-
\(p=−3\), \(p=9\)
\(25q^2+30q+9=0\)
\(4r^2+3r−5=0\)
- Answer
-
\(r=\frac{−3\pm\sqrt{89}}{8}\)
\(3t(t−2)=2\)
\(2a^2+12a+5=0\)
- Answer
-
\(a=\frac{−6\pm\sqrt{26}}{2}\)
\(4d^2−7d+2=0\)
\(\frac{3}{4}b^2+\frac{1}{2}b=\frac{3}{8}\)
- Answer
-
\(b=\frac{−2\pm\sqrt{11}}{6}\)
\(\frac{1}{9}c^2+\frac{2}{3}c=3\)
\(2x^2+12x−3=0\)
- Answer
-
\(x=\frac{−6\pm\sqrt{42}}{4}\)
\(16y^2+8y+1=0\)
Use the Discriminant to Predict the Number of Solutions of a Quadratic Equation
In the following exercises, determine the number of solutions to each quadratic equation.
- \(4x^2−5x+16=0\)
- \(36y^2+36y+9=0\)
- \(6m^2+3m−5=0\)
- \(18n^2−7n+3=0\)
- Answer
-
- no real solutions
- 1
- 2
- no real solutions
- \(9v^2−15v+25=0\)
- \(100w^2+60w+9=0\)
- \(5c^2+7c−10=0\)
- \(15d^2−4d+8=0\)
- \(r^2+12r+36=0\)
- \(8t^2−11t+5=0\)
- \(4u^2−12u+9=0\)
- \(3v^2−5v−1=0\)
- Answer
-
- 1
- no real solutions
- 1
- 2
- \(25p^2+10p+1=0\)
- \(7q^2−3q−6=0\)
- \(7y^2+2y+8=0\)
- \(25z^2−60z+36=0\)
Identify the Most Appropriate Method to Use to Solve a Quadratic Equation
In the following exercises, identify the most appropriate method (Factoring, Square Root, or Quadratic Formula) to use to solve each quadratic equation. Do not solve.
- \(x^2−5x−24=0\)
- \((y+5)^2=12\)
- \(14m^2+3m=11\)
- Answer
-
- factor
- square root
- Quadratic Formula
- \((8v+3)^2=81\)
- \(w^2−9w−22=0\)
- \(4n^2−10=6\)
- \(6a^2+14=20\)
- \((x−\frac{1}{4})^2=\frac{5}{16}\)
- \(y^2−2y=8\)
- Answer
-
- factor
- square root
- factor
- \(8b^2+15b=4\)
- \(\frac{5}{9}v^2−\frac{2}{3}v=1\)
- \((w+\frac{4}{3})^2=\frac{2}{9}\)
Everyday Math
A flare is fired straight up from a ship at sea. Solve the equation \(16(t^2−13t+40)=0\) for t, the number of seconds it will take for the flare to be at an altitude of 640 feet.
- Answer
-
5 seconds, 8 seconds
An architect is designing a hotel lobby. She wants to have a triangular window looking out to an atrium, with the width of the window 6 feet more than the height. Due to energy restrictions, the area of the window must be 140 square feet. Solve the equation \(\frac{1}{2}h^2+3h=140\) for h, the height of the window.
Writing Exercises
Solve the equation \(x^2+10x=200\)
- by completing the square
- using the Quadratic Formula
- Which method do you prefer? Why?
- Answer
-
- −20, 10
- −20, 10
- answers will vary
Solve the equation \(12y^2+23y=24\)
- by completing the square
- using the Quadratic Formula
- Which method do you prefer? Why?
Self Check
ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

ⓑ What does this checklist tell you about your mastery of this section? What steps will you take to improve?