Skip to main content
Mathematics LibreTexts

7.5: Factoring, a general strategy

  • Page ID
    45070
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A General Strategy to Factoring

    Step 1. Factor out the greatest common factor, if possible. This includes factoring a negative if the leading coefficient is negative.

    Step 2. Determine the number of terms in the polynomial.

    Step 3.

    1. Two Terms
      • Difference of two squares: \(a^2 − b^2 = (a + b)(a − b)\)
      • Difference of two cubes: \(a^3 − b^3 = (a − b)(a^2 + ab + b^2)\)
      • Sum of two cubes: \(a^3 + b^3 = (a + b)(a^2 − ab + b^2)\)
      • Difference of two fourth powers: \(a^4 − b^4 = (a^2 + b^2)(a + b)(a − b)\)
    2. Three Terms
      • Perfect square trinomial: \(a^2 + 2ab + b^2 = (a + b)^2\) or \(a^2 − 2ab + b^2 = (a − b)^2\)
      • Old fashion way:
        • \(x^2 + (p + q)x + p\cdot q = (x + p)(x + q)\)
        • \(ax^2 + bx + c\) → Factor by grouping or by trial-and-error.
    3. Four Terms
      • Factor by grouping, rearranging terms, if needed.

    Step 4. Check your work by FOIL or multiplying out the product of factors

    Example 7.5.1

    Factor completely: \(4x^2+56xy+196y^2\)

    Solution

    Let’s first factor the GCF. Recall, there are three terms. So we can use either the perfect square trinomial formula or factor as usual by grouping or trial-and-error.

    \[\begin{array}{rl}4x^2+56xy+196y^2&\text{Factor a GCF }4 \\ \color{blue}{4}\color{black}{}(x^2+14xy+49y^2)&\text{Perfect square trinomial} \\ \color{blue}{4}\color{black}{}((x)^2+2(x)(7y)+(7y)^2)&\text{Factor, where }a=x\text{ and }b=7y \\ \color{blue}{4}\color{black}{}(x+7y)^2&\text{Factored form}\end{array}\nonumber\]

    Example 7.5.2

    Factor completely: \(5x^2y+15xy-35x^2-105x\)

    Solution

    Let’s first factor the GCF. Recall, there are four terms. So we can use factor by grouping.

    \[\begin{array}{rl}5x^2y+15xy-35x^2-105x&\text{Factor a GCF }5x \\ \color{blue}{5x}\color{black}{}(xy+3y-7x-21)&\text{Factor by grouping} \\ \color{blue}{5x}\color{black}{}((xy+3y)+(-7x-21))&\text{Factor the GCF from each group} \\ \color{blue}{5x}\color{black}{}(y(x+3)-7(x+3))&\text{Factor the GCF }(x+3) \\ \color{blue}{5x}\color{black}{}(x+3)(y-7)&\text{Factored form}\end{array}\nonumber\]

    Example 7.5.3

    Factor completely: \(100x^2-400\)

    Solution

    Let’s first factor the GCF. Recall, there is a difference of two terms. Since the variable \(x\) is squared, let’s see if we can use the difference of two squares formula.

    \[\begin{array}{rl}100x^2-400&\text{Factor a GCF }100 \\ \color{blue}{100}\color{black}{}(x^2-4)&\text{Difference of two squares} \\ \color{blue}{100}\color{black}{}((x)^2-(2)^2)&\text{Factor} \\ \color{blue}{100}\color{black}{}(x+2)(x-2)&\text{Factored form}\end{array}\nonumber\]

    Example 7.5.4

    Factor: \(108x^3y^2-39x^2y^2+3xy^2\)

    Solution

    Notice all three terms have a common factor of \(3y^2\). We factor \(3y^2\) first, then factor as usual or by using a special product.

    \[\begin{array}{rl}108x^3y^2-39x^2y^2+3xy^2&\text{Factor the GCF} \\ \color{blue}{3xy^2}\color{black}{}(36x^2-13x+1)\end{array}\nonumber\]

    Next, we only concentrate on the expression in the parenthesis. Let’s factor by trial-and-error. We know the first’s product is \(36x^2\) and the last’s product is \(1\). Since the signs of the last two terms are negative and positive, respectively, then the binomial factors will have negative signs.

    Table 7.5.1
    binomials FOIL Yes or no?
    \((6x-1)(6x-1)\) \(36x^2-12x+1\) NO
    \((18x-1)(2x-1)\) \(36x^2-20x+1\) NO
    \((9x-1)(4x-1)\) \(36x^2-13x+1\) YES

    We have found the factored form of the original expression:

    \[\color{blue}{3xy^2}\color{black}{}(9x-1)(4x-1)\nonumber\]

    Note

    Variables originated in ancient Greece where Aristotle would use a single capital letter to represent a number.

    Example 7.5.5

    Factor completely: \(5+625y^3\)

    Solution

    Let’s factor the GCF. Recall, there is a sum of two terms. Since the only formula with a sum of two terms is the sum of two cubes, then we most likely will be using this special product formula.

    \[\begin{array}{rl}5+625y^3&\text{Rewrite in standard form} \\ 625y^3+5&\text{Factor a GCF }5 \\ \color{blue}{5}\color{black}{}(125y^3+1)&\text{Sum of two cubes} \\ \color{blue}{5}\color{black}{}((5y)^3+(1)^3)&\text{Factor, where }a=5y\text{ and }b=1 \\ \color{blue}{5}\color{black}{}(5y+1)((5y)^2-(5y)(1)+(1)^2)&\text{Simplify} \\ \color{blue}{5}\color{black}{}(5y+1)(25y^2-5y+1)&\text{Factored form}\end{array}\nonumber\]

    Factoring, A General Strategy Homework

    Factor completely.

    Exercise 7.5.1

    \(24az − 18ah + 60yz − 45yh\)

    Exercise 7.5.2

    \(5u^2 − 9uv + 4v^2\)

    Exercise 7.5.3

    \(−2x^3 + 128y^3\)

    Exercise 7.5.4

    \(5n^3 + 7n^2 − 6n\)

    Exercise 7.5.5

    \(54u^3 − 16\)

    Exercise 7.5.6

    \(n^2-n\)

    Exercise 7.5.7

    \(x^2 − 4xy + 3y^2\)

    Exercise 7.5.8

    \(9x^2 − 25y^2\)

    Exercise 7.5.9

    \(m^2 − 4n^2\)

    Exercise 7.5.10

    \(36b^2 c − 16xd − 24b^2d +24xc\)

    Exercise 7.5.11

    \(128 + 54x^3\)

    Exercise 7.5.12

    \(2x^3 + 6x^2y − 20y^2x\)

    Exercise 7.5.13

    \(n^3 + 7n^2 + 10n\)

    Exercise 7.5.14

    \(27x^3 − 64\)

    Exercise 7.5.15

    \(5x^2+2x\)

    Exercise 7.5.16

    \(3k^3 − 27k^2 + 60k\)

    Exercise 7.5.17

    \(mn − 12x + 3m − 4xn\)

    Exercise 7.5.18

    \(16x^2 − 8xy + y^2\)

    Exercise 7.5.19

    \(27m^2 − 48n^2\)

    Exercise 7.5.20

    \(9x^3 + 21x^2y − 60y^2x\)

    Exercise 7.5.21

    \(2m^2 + 6mn − 20n^2\)

    Exercise 7.5.22

    \(2x^2 − 11x + 15\)

    Exercise 7.5.23

    \(16x^2 + 48xy + 36y^2\)

    Exercise 7.5.24

    \(20uv − 60u^3 − 5xv + 15xu^2\)

    Exercise 7.5.25

    \(2x^3 + 5x^2y + 3y^2x\)

    Exercise 7.5.26

    \(54 − 128x^3\)

    Exercise 7.5.27

    \(5x^2 − 22x − 15\)

    Exercise 7.5.28

    \(45u^2 − 150uv + 125v^2\)

    Exercise 7.5.29

    \(x^3 − 27y^3\)

    Exercise 7.5.30

    \(12ab − 18a + 6nb − 9n\)

    Exercise 7.5.31

    \(3m^3 − 6m^2n − 24n^2m\)

    Exercise 7.5.32

    \(64m^3 + 27n^3\)

    Exercise 7.5.33

    \(3ac + 15ad^2 + x^2c + 5x^2d^2\)

    Exercise 7.5.34

    \(64m^3 − n^3\)

    Exercise 7.5.35

    \(16a^2 − 9b^2\)

    Exercise 7.5.36

    \(2x^2 − 10x + 12\)

    Exercise 7.5.37

    \(32x^2 − 18y^2\)

    Exercise 7.5.38

    \(2k^2 + k − 10\)

    Exercise 7.5.39

    \(v^2+v\)

    Exercise 7.5.40

    \(x^3+4x^2\)

    Exercise 7.5.41

    \(9n^3 − 3n^2\)

    Exercise 7.5.42

    \(2u^2v^2 − 11uv^3 + 15v^4\)


    This page titled 7.5: Factoring, a general strategy is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Darlene Diaz (ASCCC Open Educational Resources Initiative) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.