10.9: Radicals- Answers to the Homework Exercises
- Page ID
- 45142
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Simplify Radicals
- \(7\sqrt{5}\)
- \(2\sqrt{3}\)
- \(48\sqrt{2}\)
- \(8\sqrt{3n}\)
- \(6x\sqrt{7}\)
- \(-56x^2\)
- \(3xy\sqrt{5}\)
- \(8x^2y^2\sqrt{5}\)
- \(35xy\sqrt{5y}\)
- \(-48x^2z^2y\sqrt{5}\)
- \(-12p\sqrt{6mn}\)
- \(14\)
- \(20\sqrt{2}\)
- \(-21\sqrt{7}\)
- \(10n\sqrt{n}\)
- \(-20p^2\sqrt{7}\)
- \(32p\sqrt{7}\)
- \(16a^2b\sqrt{2}\)
- \(56\sqrt{2mn}\)
- \(-30y^2x\sqrt{2x}\)
- \(-4yz\sqrt{2xz}\)
- \((\sqrt[5]{m})^3\)
- \((\sqrt{7x})^3\)
- \((6x)^{-\dfrac{3}{2}}\)
- \(n^{-\dfrac{7}{4}}\)
- \(4\)
- \(8\)
Add and Subtract Radicals
- \(6\sqrt{5}\)
- \(-5\sqrt{6}\)
- \(-8\sqrt{2}\)
- \(-2\sqrt{2}\)
- \(-3\sqrt{6}-\sqrt{3}\)
- \(-4\sqrt{6}+4\sqrt{5}\)
- \(2\sqrt[3]{2}\)
- \(\sqrt[4]{2}-3\sqrt[4]{3}\)
- \(2\sqrt[4]{2}+\sqrt[4]{3}+6\sqrt[4]{4}\)
- \(4\sqrt[5]{5}-4\sqrt[5]{6}\)
- \(-3\sqrt{6}-5\sqrt{3}\)
- \(-3\sqrt{3}\)
- \(-6\sqrt{6}+9\sqrt{3}\)
- \(8\sqrt{5}-\sqrt{3}\)
- \(3\sqrt{2}+3\sqrt{6}\)
- \(-\sqrt{5}-3\sqrt{6}\)
- \(6\sqrt[3]{5}-3\sqrt[3]{3}\)
- \(5\sqrt[4]{6}+2\sqrt[4]{4}\)
- \(-2\sqrt[4]{3}-9\sqrt[4]{5}-3\sqrt[4]{2}\)
- \(-11\sqrt[7]{2}-2\sqrt[7]{5}\)
Multiply and Divide Radicals
- \(-48\sqrt{5}\)
- \(2x^2\sqrt[3]{x}\)
- \(-45\sqrt{5}-10\sqrt{15}\)
- \(-2-4\sqrt{2}\)
- \(6a+a\sqrt{10}+6a\sqrt{6}+2a\sqrt{15}\)
- \(\dfrac{\sqrt{3}}{25}\)
- \(\dfrac{\sqrt{5}}{2}\)
- \(\dfrac{5}{12y^4}\)
- \(\dfrac{\sqrt[3]{10}}{5}\)
- \(\dfrac{5\sqrt[4]{r^2}}{2}\) or \(\dfrac{5\sqrt{r}}{2}\)
- \(-25r^2\sqrt{2r}\)
- \(5\sqrt{2}+2\sqrt{5}\)
- \(5\sqrt{3}-9\sqrt{5v}\)
- \(30+8\sqrt{3}+5\sqrt{15}+4\sqrt{5}\)
- \(-10\sqrt{m}+25\sqrt{2}+\sqrt{2m}-5\)
- \(2\)
- \(4\sqrt{2}\)
- \(\dfrac{\sqrt{n}}{2}\)
- \(\dfrac{1}{4}\)
Rationalize Denominators
- \(\dfrac{4\sqrt{3}}{9}\)
- \(2\)
- \(\dfrac{4\sqrt{5}}{5}\)
- \(\dfrac{2+\sqrt{3}}{5}\)
- \(\dfrac{\sqrt{6}-9}{3}\)
- \(\dfrac{10-2\sqrt{2}}{23}\)
- \(3-\sqrt{5}\)
- \(\sqrt{2}-1\)
- \(\sqrt{a}\)
- \(4-2\sqrt{3}+2\sqrt{6}-3\sqrt{2}\)
- \(3\sqrt{2}+2\sqrt{3}\)
- \(\dfrac{-1+\sqrt{5}}{4}\)
- \(\dfrac{\sqrt{3}-1}{4}\)
- \(\dfrac{\sqrt{30}-2\sqrt{3}}{18}\)
- \(\dfrac{2\sqrt{3}+\sqrt{2}}{2}\)
- \(\dfrac{\sqrt{5}-\sqrt{3}}{2}\)
- \(3+2\sqrt{3}\)
- \(3-2\sqrt{2}\)
- \(\dfrac{2\sqrt{5}-2\sqrt{15}+\sqrt{3}+3}{-2}\)
- \(\dfrac{a\sqrt{b}+b\sqrt{a}}{a-b}\)
- \(\dfrac{2\sqrt{5}-5\sqrt{2}-10+5\sqrt{10}}{30}\)
- \(\dfrac{8+3\sqrt{6}}{10}\)
Radicals with Mixed Indices
- \(\sqrt[4]{4x^2y^3}\)
- \(\dfrac{\sqrt[3]{36xy}}{3y}\)
- \(\sqrt[4]{x^3y^2z}\)
- \(\sqrt{3xy^3}\)
- \(\sqrt[5]{x^3y^4z^2}\)
- \(\sqrt{5y}\)
- \(\sqrt[6]{5400}\)
- \(\sqrt[6]{x^3(x-2)^2}\)
- \(\sqrt[12]{x^{11}y^{10}}\)
- \(a\sqrt[4]{a}\)
- \(xy\sqrt[6]{xy^5}\)
- \(x\sqrt[12]{59049xy^{11}z^{10}}\)
- \(\sqrt[12]{a^5}\)
- \(\sqrt[10]{ab^9c^7}\)
- \(\sqrt[15]{(2x+1)^4}\)
- \(\sqrt[15]{27y^5z^5}\)
- \(\sqrt[10]{4a^9b^9}\)
- \(\sqrt[30]{x^{22}y^{11}z^{27}}\)
- \(a\sqrt[12]{a^5}\)
- \(2xy^2\sqrt[6]{2x^5y}\)
- \(4x(y+z)^3\sqrt[6]{2x(y+z)}\)
- \(\dfrac{\sqrt[15]{a^7b^{11}}}{b}\)
- \(\sqrt[12]{(2+5x)^5}\)
Radical Equations
- \(3\)
- \(\pm 2\)
- \(5\)
- \(5\)
- \(3\)
- \(3\)
- \(7\)
- \(21\)
-
- \(79.5\) inches
- \(145.7\) pounds
Solving with Rational Exponents
- \(\pm 5\sqrt{3}\)
- \(\pm 2\sqrt{6}\)
- \(-1\)
- \(-7\)
- \(-\dfrac{3}{8}, -\dfrac{5}{8}\)
- \(-\dfrac{34}{3}, -10\)
- \(-2\)
- \(-3,11\)
- \(\dfrac{-1\pm 3\sqrt{2}}{2}\)
- \(-\dfrac{11}{2},\dfrac{5}{2}\)
- \(\dfrac{9}{8}\)
- \(3\)
Complex Numbers
- \(8i\)
- \(9i\)
- \(10i\)
- \(3i\sqrt{10}\)
- \(7i\sqrt{5}\)
- \(40\)
- \(-12\)
- \(-15\)
- \(-2\sqrt{5}\)
- \(-7-4i\)
- \(2-5i\)
- \(\dfrac{1+i\sqrt{3}}{2}\)
- \(\dfrac{2+i\sqrt{2}}{2}\)
- \(5-i\sqrt{3}\)
- \(\dfrac{5+2i\sqrt{3}}{2}\)
- \(11-4i\)
- \(-3-13i\)
- \(-8-2i\)
- \(80-10i\)
- \(44+8i\)
- \(9i+5\)
- \(\dfrac{3i-6}{4}\)
- \(\dfrac{-40i+4}{101}\)
- \(\dfrac{70+49i}{149}\)
- \(-4i\)
- \(5-12i\)
- \(13-8i\)
- \(-32-128i\)
- \(-28+76i\)
- \(-1+13i\)
- \(\dfrac{4i+2}{3}\)
- \(-2i\)
- \(\dfrac{4-6i}{13}\)
- \(\dfrac{48i-56}{85}\)
- \(1\)
- \(-1\)
- \(1\)
- \(-i\)