Skip to main content
Mathematics LibreTexts

3.2: Countable and Uncountable Sets

  • Page ID
    22651
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Definition

    A function \(\varphi: A \rightarrow B\) is said to be a one-to-one correspondence if \(\varphi\) is both one-to-one and onto.

    Definition

    We say sets \(A\) and \(B\) have the same cardinality if there exists a one-to-one correspondence \(\varphi: A \rightarrow B\).

    We denote the fact \(A\) and \(B\) have the same cardinality by writing \(|A|=|B| .\)

    Exercise \(\PageIndex{1}\)

    Define a relation on sets by setting \(A \sim B\) if and only if \(|A|=|B| .\) Show that this relation is an equivalence relation.

    Definition

    Let \(A\) be a set. If, for \(n \in \mathbb{Z}^{+}, A\) has the cardinality of the set \(\{1,2,3, \ldots, n\},\) we say \(A\) is finite and write \(|A|=n .\) If \(A\) has the cardinality of \(\mathbb{Z}^{+},\) we say \(A\) is countable and write \(|A|=\aleph_{0} .\)

    Example \(\PageIndex{1}\)

    If we define \(\varphi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}\) by

    \[\varphi(n)=\left\{\begin{array}{ll}{\frac{n-1}{2},} & {\text { if } n \text { is odd, }} \\ {-\frac{n}{2},} & {\text { if } n \text { is even, }}\end{array}\right.\]

    then \(\varphi\) is a one-to-one correspondence. Thus \(|\mathbb{Z}|=\aleph_{0}\).

    Exercise \(\PageIndex{2}\)

    Let \(A\) be the set of even integers. Show that \(|A|=\aleph_{0}\).

    Exercise \(\PageIndex{3}\)

    Verify each of the following:

    a. If \(A\) is a nonempty subset of \(\mathbb{Z}^{+},\) then \(A\) is either finite or countable.

    b. If \(A\) is a nonempty subset of a countable set \(B,\) then \(A\) is either finite or countable.

    Proposition \(\PageIndex{1}\)

    Suppose \(A\) and \(B\) are countable sets. Then the set \(C=\) \(A \cup B\) is countable.

    Proof

    Suppose \(A\) and \(B\) are disjoint, that is, \(A \cap B=\emptyset .\) Let \(\varphi: \mathbb{Z}^{+} \rightarrow A\) and \(\psi: \mathbb{Z}^{+} \rightarrow B\) be one-to-one correspondences. Define \(\tau: \mathbb{Z}^{+} \rightarrow C\) by

    \[\tau(n)=\left\{\begin{array}{ll}{\varphi\left(\frac{n+1}{2}\right),} & {\text { if } n \text { is odd, }} \\ {\psi\left(\frac{n}{2}\right),} & {\text { if } n \text { is even. }}\end{array}\right.\]

    Then \(\tau\) is a one-to-one correspondence, showing that \(C\) is countable.

    If \(A\) and \(B\) are not disjoint, then \(\tau\) is onto but not one-to-one. However, in that case \(C\) has the cardinality of an infinite subset of \(\mathbb{Z}^{+},\) and so is countable. \(\quad\) Q.E.D.

    Definition

    A nonempty set which is not finite is said to be infinite. An infinite set which is not countable is said to be uncountable.

    Exercise \(\PageIndex{4}\)

    Suppose \(A\) is uncountable and \(B \subset A\) is countable. Show that \(A \backslash B\) is uncountable.

    Proposition \(\PageIndex{2}\)

    Suppose \(A\) and \(B\) are countable. Then \(C=A \times B\) is countable.

    Proof

    Let \(\varphi: \mathbb{Z}^{+} \rightarrow A\) and \(\psi: \mathbb{Z}^{+} \rightarrow B\) be one-to-one correspondences. Let \(a_{i}=\varphi(i)\) and \(b_{i}=\psi(i) .\) Define \(\tau: \mathbb{Z}^{+} \rightarrow C\) by letting

    \[\tau(1)=\left(a_{1}, b_{1}\right),\]

    \[\tau(2)=\left(a_{1}, b_{2}\right),\]

    \[\tau(3)=\left(a_{2}, b_{1}\right),\]

    \[\tau(4)=\left(a_{1}, b_{3}\right),\]

    \[\tau(5)=\left(a_{2}, b_{2}\right),\]

    \[\tau(6)=\left(a_{3}, b_{1}\right),\]

    \[\tau(7)=\left(a_{1}, b_{4}\right),\]

    \[\vdots = \vdots\]

    That is, form the infinite matrix with \(\left(a_{i}, b_{j}\right)\) in the \(i\)th row and \(j\)th column, and then count the entries by reading down the diagonals from right to left. Then \(\tau\) is a one-to-one correspondence and \(C\) is countable.

    Proposition \(\PageIndex{3}\)

    \(\mathbb{Q}\) is countable.

    Proof

    By the previous proposition, \(\mathbb{Z} \times \mathbb{Z}\) is countable. Let

    \[A=\{(p, q): p, q \in \mathbb{Z}, q>0, p \text { and } q \text { relatively prime }.\}\]

    Then \(A\) is infinite and \(A \subset \mathbb{Z} \times \mathbb{Z},\) so \(A\) is countable. But clearly \(|\mathbb{Q}|=|A|,\) so \(\mathbb{Q}\) is countable. \(\quad\) Q.E.D.

    Proposition \(\PageIndex{4}\)

    Suppose for each \(i \in \mathbb{Z}^{+}, A_{i}\) is countable. Then

    \[B=\bigcup_{i=1}^{\infty} A_{i}\]

    is countable.

    Proof

    Suppose the sets \(A_{i}, i \in \mathbb{Z}^{+},\) are pairwise disjoint, that is, \(A_{i} \cap A_{j}=\emptyset\) for all \(i, j \in \mathbb{Z}^{+} .\) For each \(i \in \mathbb{Z}^{+},\) let \(\varphi_{i}: \mathbb{Z}^{+} \rightarrow A_{i}\) be a one-to-one correspondence. Then \(\psi: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow B\) defined by

    \[\psi(i, j)=\varphi_{i}(j)\]

    is a one-to-one correspondence, and so \(|B|=\left|\mathbb{Z}^{+} \times \mathbb{Z}^{+}\right|=\aleph_{0}\).

    If the sets \(A_{i}, i \in \mathbb{Z}^{+},\) are not disjoint, then \(\psi\) is onto but not one-to-one. But then there exists a subset \(P\) of \(\mathbb{Z}^{+} \times \mathbb{Z}^{+}\) such that \(\psi: P \rightarrow B\) is a one-to-one correspondence. Since \(P\) is an infinite subset of a countable set, \(P\) is countable and so \(|B|=\aleph_{0} .\) \(\quad\) Q.E.D.

    If in the previous proposition we allow that, for each \(i \in \mathbb{Z}^{+}, A_{i}\) is either finite or countable, then \(B=\bigcup_{i=1}^{\infty} A_{i}\) will be either finite or countable.


    This page titled 3.2: Countable and Uncountable Sets is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform.