# 3.2: Countable and Uncountable Sets

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Definition

A function $$\varphi: A \rightarrow B$$ is said to be a one-to-one correspondence if $$\varphi$$ is both one-to-one and onto.

## Definition

We say sets $$A$$ and $$B$$ have the same cardinality if there exists a one-to-one correspondence $$\varphi: A \rightarrow B$$.

We denote the fact $$A$$ and $$B$$ have the same cardinality by writing $$|A|=|B| .$$

## Exercise $$\PageIndex{1}$$

Define a relation on sets by setting $$A \sim B$$ if and only if $$|A|=|B| .$$ Show that this relation is an equivalence relation.

## Definition

Let $$A$$ be a set. If, for $$n \in \mathbb{Z}^{+}, A$$ has the cardinality of the set $$\{1,2,3, \ldots, n\},$$ we say $$A$$ is finite and write $$|A|=n .$$ If $$A$$ has the cardinality of $$\mathbb{Z}^{+},$$ we say $$A$$ is countable and write $$|A|=\aleph_{0} .$$

## Example $$\PageIndex{1}$$

If we define $$\varphi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}$$ by

$\varphi(n)=\left\{\begin{array}{ll}{\frac{n-1}{2},} & {\text { if } n \text { is odd, }} \\ {-\frac{n}{2},} & {\text { if } n \text { is even, }}\end{array}\right.$

then $$\varphi$$ is a one-to-one correspondence. Thus $$|\mathbb{Z}|=\aleph_{0}$$.

## Exercise $$\PageIndex{2}$$

Let $$A$$ be the set of even integers. Show that $$|A|=\aleph_{0}$$.

## Exercise $$\PageIndex{3}$$

Verify each of the following:

a. If $$A$$ is a nonempty subset of $$\mathbb{Z}^{+},$$ then $$A$$ is either finite or countable.

b. If $$A$$ is a nonempty subset of a countable set $$B,$$ then $$A$$ is either finite or countable.

## Proposition $$\PageIndex{1}$$

Suppose $$A$$ and $$B$$ are countable sets. Then the set $$C=$$ $$A \cup B$$ is countable.

Proof

Suppose $$A$$ and $$B$$ are disjoint, that is, $$A \cap B=\emptyset .$$ Let $$\varphi: \mathbb{Z}^{+} \rightarrow A$$ and $$\psi: \mathbb{Z}^{+} \rightarrow B$$ be one-to-one correspondences. Define $$\tau: \mathbb{Z}^{+} \rightarrow C$$ by

$\tau(n)=\left\{\begin{array}{ll}{\varphi\left(\frac{n+1}{2}\right),} & {\text { if } n \text { is odd, }} \\ {\psi\left(\frac{n}{2}\right),} & {\text { if } n \text { is even. }}\end{array}\right.$

Then $$\tau$$ is a one-to-one correspondence, showing that $$C$$ is countable.

If $$A$$ and $$B$$ are not disjoint, then $$\tau$$ is onto but not one-to-one. However, in that case $$C$$ has the cardinality of an infinite subset of $$\mathbb{Z}^{+},$$ and so is countable. $$\quad$$ Q.E.D.

## Definition

A nonempty set which is not finite is said to be infinite. An infinite set which is not countable is said to be uncountable.

## Exercise $$\PageIndex{4}$$

Suppose $$A$$ is uncountable and $$B \subset A$$ is countable. Show that $$A \backslash B$$ is uncountable.

## Proposition $$\PageIndex{2}$$

Suppose $$A$$ and $$B$$ are countable. Then $$C=A \times B$$ is countable.

Proof

Let $$\varphi: \mathbb{Z}^{+} \rightarrow A$$ and $$\psi: \mathbb{Z}^{+} \rightarrow B$$ be one-to-one correspondences. Let $$a_{i}=\varphi(i)$$ and $$b_{i}=\psi(i) .$$ Define $$\tau: \mathbb{Z}^{+} \rightarrow C$$ by letting

$\tau(1)=\left(a_{1}, b_{1}\right),$

$\tau(2)=\left(a_{1}, b_{2}\right),$

$\tau(3)=\left(a_{2}, b_{1}\right),$

$\tau(4)=\left(a_{1}, b_{3}\right),$

$\tau(5)=\left(a_{2}, b_{2}\right),$

$\tau(6)=\left(a_{3}, b_{1}\right),$

$\tau(7)=\left(a_{1}, b_{4}\right),$

$\vdots = \vdots$

That is, form the infinite matrix with $$\left(a_{i}, b_{j}\right)$$ in the $$i$$th row and $$j$$th column, and then count the entries by reading down the diagonals from right to left. Then $$\tau$$ is a one-to-one correspondence and $$C$$ is countable.

## Proposition $$\PageIndex{3}$$

$$\mathbb{Q}$$ is countable.

Proof

By the previous proposition, $$\mathbb{Z} \times \mathbb{Z}$$ is countable. Let

$A=\{(p, q): p, q \in \mathbb{Z}, q>0, p \text { and } q \text { relatively prime }.\}$

Then $$A$$ is infinite and $$A \subset \mathbb{Z} \times \mathbb{Z},$$ so $$A$$ is countable. But clearly $$|\mathbb{Q}|=|A|,$$ so $$\mathbb{Q}$$ is countable. $$\quad$$ Q.E.D.

## Proposition $$\PageIndex{4}$$

Suppose for each $$i \in \mathbb{Z}^{+}, A_{i}$$ is countable. Then

$B=\bigcup_{i=1}^{\infty} A_{i}$

is countable.

Proof

Suppose the sets $$A_{i}, i \in \mathbb{Z}^{+},$$ are pairwise disjoint, that is, $$A_{i} \cap A_{j}=\emptyset$$ for all $$i, j \in \mathbb{Z}^{+} .$$ For each $$i \in \mathbb{Z}^{+},$$ let $$\varphi_{i}: \mathbb{Z}^{+} \rightarrow A_{i}$$ be a one-to-one correspondence. Then $$\psi: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow B$$ defined by

$\psi(i, j)=\varphi_{i}(j)$

is a one-to-one correspondence, and so $$|B|=\left|\mathbb{Z}^{+} \times \mathbb{Z}^{+}\right|=\aleph_{0}$$.

If the sets $$A_{i}, i \in \mathbb{Z}^{+},$$ are not disjoint, then $$\psi$$ is onto but not one-to-one. But then there exists a subset $$P$$ of $$\mathbb{Z}^{+} \times \mathbb{Z}^{+}$$ such that $$\psi: P \rightarrow B$$ is a one-to-one correspondence. Since $$P$$ is an infinite subset of a countable set, $$P$$ is countable and so $$|B|=\aleph_{0} .$$ $$\quad$$ Q.E.D.

If in the previous proposition we allow that, for each $$i \in \mathbb{Z}^{+}, A_{i}$$ is either finite or countable, then $$B=\bigcup_{i=1}^{\infty} A_{i}$$ will be either finite or countable.

This page titled 3.2: Countable and Uncountable Sets is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform.