7.5: The Fundamental Theorem of Calculus
- Page ID
- 22682
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)(Fundamental Theorem of Calculus)
Suppose \(f\) is integrable on \([a, b] .\) If \(F\) is continuous on \([a, b]\) and differentiable on \((a, b)\) with \(F^{\prime}(x)=f(x)\) for all \(x \in(a, b),\) then
\[\int_{a}^{b} f=F(b)-F(a).\]
- Proof
-
Given \(\epsilon>0,\) let \(P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}\) be a partition of \([a, b]\) for which
\[U(f, P)-L(f, P)<\epsilon .\]
For \(i=1,2, \ldots, n,\) let \(t_{i} \in\left(x_{i-1}, x_{i}\right)\) be points for which
\[F\left(x_{i}\right)-F\left(x_{i-1}\right)=f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right).\]
Then
\[\sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n}\left(F\left(x_{i}\right)-F\left(x_{i-1}\right)\right)=F(b)-F(a).\]
But
\[L(f, P) \leq \sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \leq U(f, P),\]
so
\[\left|F(b)-F(a)-\int_{a}^{b} f\right|<\epsilon .\]
Since \(\epsilon\) was arbitrary, we conclude that
\[\int_{a}^{b} f=F(b)-F(a).\]
Q.E.D.
(Integration by parts)
Suppose \(f\) and \(g\) are integrable
on \([a, b] .\) If \(F\) and \(G\) are continuous on \([a, b]\) and differentiable on \((a, b)\) with \(F^{\prime}(x)=f(x)\) and \(G^{\prime}(x)=g(x)\) for all \(x \in(a, b),\) then
\[\int_{a}^{b} F(x) g(x) d x=F(b) G(b)-F(a) G(a)-\int_{a}^{b} f(x) G(x) d x.\]
- Proof
-
By the Fundamental Theorem of Calculus,
\[\int_{a}^{b}(F(x) g(x)+f(x) G(x)) d x=F(b) G(b)-F(a) G(a).\]
Q.E.D.
7.5.1 The other Fundamental Theorem of Calculus
Suppose \(f\) is integrable on \([a, b]\) and \(F:[a, b] \rightarrow \mathbb{R}\) is defined by
\[F(x)=\int_{a}^{x} f(t) d t.\]
Then \(F\) is uniformly continuous on \([a, b] .\)
- Proof
-
Let \(\epsilon>0\) be given and let \(M>0\) be such that \(|f(x)| \leq M\) for all \(x \in[a, b] .\) Then for any \(x, y \in[a, b]\) with \(x<y\) and \(y-x<\frac{e}{M}\),
\[|F(y)-F(x)|=\left|\int_{x}^{y} f(t) d t\right| \leq M(y-x)<\epsilon .\]
Hence \(F\) is uniformly continuous on \([a, b] . \quad\) Q.E.D.
The following theorem is often considered to be part of the Fundamental Theorem of Calculus.
Suppose \(f\) is integrable on \([a, b]\) and continuous at \(u \in(a, b) .\) If \(F:[a, b] \rightarrow \mathbb{R}\) is defined by
\[F(x)=\int_{a}^{x} f(t) d t,\]
then \(F\) is differentiable at \(u\) and \(F^{\prime}(u)=f(u)\).
- Proof
-
Let \(\epsilon>0\) be given and choose \(\delta>0\) such that \(|f(x)-f(u)|<\epsilon\) whenever \(|x-u|<\delta .\) Then if \(0<h<\delta,\) we have
\[\begin{aligned}\left|\frac{F(u+h)-F(u)}{h}-f(u)\right| &=\left|\frac{1}{h} \int_{u}^{u+h} f(t) d t-f(u)\right| \\ &=\left|\frac{1}{h} \int_{u}^{u+h}(f(t)-f(u)) d t\right| \\ &<\epsilon . \end{aligned}\]
If \(-\delta<h<0,\) then
\[\begin{aligned}\left|\frac{F(u+h)-F(u)}{h}-f(u)\right| &=\left|-\frac{1}{h} \int_{u+h}^{u} f(t) d t-f(u)\right| \\ &=\left|\frac{1}{h} \int_{u+h}^{u} f(t) d t+f(u)\right| \\ &=\left|\frac{1}{h} \int_{u+h}^{u} f(t) d t-\frac{1}{h} \int_{u+h}^{u} f(u) d t\right| \\ &=\left|\frac{1}{h} \int_{u+h}^{u}(f(t)-f(u)) d t\right| \\ &<\epsilon . \end{aligned}\]
Hence
\[F^{\prime}(u)=\lim _{h \rightarrow 0} \frac{F(u+h)-F(u)}{h}=f(u) .\]
Q.E.D.
If \(a<b\) and \(f\) is continuous on \([a, b],\) then there exists a function \(F:[a, b] \rightarrow \mathbb{R}\) which is continuous on \([a, b]\) with \(F^{\prime}(x)=f(x)\) for all \(x \in(a, b) .\)
- Proof
-
Let
\[F(x)=\int_{a}^{x} f(t) d t .\]
Q.E.D.
If
\[g(x)=\int_{0}^{x} \sqrt{1+t^{4}} d t,\]
then \(g^{\prime}(x)=\sqrt{1+x^{4}}\).
(Integration by substitution)
Suppose \(I\) is an open interval, \(\varphi: I \rightarrow \mathbb{R}, a<b,[a, b] \subset I,\) and \(\varphi^{\prime}\) is continuous on \([a, b] .\) If \(f: \varphi([a, b]) \rightarrow \mathbb{R}\) is continuous, then
\[\int_{\varphi(a)}^{\varphi(b)} f(u) d u=\int_{a}^{b} f(\varphi(x)) \varphi^{\prime}(x) d x.\]
- Proof
-
If \(m\) and \(M\) are the minimum and maximum values, respectively, of \(\varphi\) on \([a, b],\) then \(\varphi([a, b])=[m, M] .\) If \(m=M,\) then \(\varphi(x)=m\) for all \(x \in[a, b],\) and both sides of \((7.5 .17)\) are \(0 .\) So we may assume \(m<M .\) Let \(F\) be a function which is continuous on \([m, M]\) with \(F^{\prime}(u)=f(u)\) for every \(u \in(m, M) .\) Let \(g=F \circ \varphi .\) Then
\[g^{\prime}(x)=F^{\prime}(\varphi(x)) \varphi^{\prime}(x)=f(\varphi(x)) \varphi^{\prime}(x).\]
So if \(\varphi(a) \leq \varphi(b)\),
\[\begin{aligned} \int_{a}^{b} f(\varphi(x)) \varphi^{\prime}(x) d x &=g(b)-g(a) \\ &=F(\varphi(b))-F(\varphi(a)) \\ &=\int_{\varphi(a)}^{\varphi(b)} f(u) d u. \end{aligned}\]
If \(\varphi(a)>\varphi(b),\) then
\[\begin{aligned} \int_{a}^{b} f(\varphi(x)) \varphi^{\prime}(x) d x &=g(b)-g(a) \\ &=F(\varphi(b))-F(\varphi(a)) \\ &=-(F(\varphi(a))-F(\varphi(b))) \\ &=-\int_{\varphi(b)}^{\varphi(a)} f(u) d u \\ &=\int_{\varphi(a)}^{\varphi(b)} f(u) d u. \end{aligned}\]
Q.E.D.
Evaluate
\[\int_{0}^{1} u \sqrt{u+1} d u\]
using (a) integration by parts and (b) substitution.
Suppose \(\varphi: \mathbb{R} \rightarrow \mathbb{R}\) is differentiable on \(\mathbb{R}\) and periodic with period \(1(\text { that is, } \varphi(x+1)=\varphi(x) \text { for every } x \in \mathbb{R}) .\) Show that for any continuous function \(f: \mathbb{R} \rightarrow \mathbb{R}\),
\[\int_{0}^{1} f(\varphi(x)) \varphi^{\prime}(x) d x=0.\]
(Integral Mean Value Theorem)
If \(f\) is continuous on \([a, b],\) then there exists \(c \in[a, b]\) such that
\[\int_{a}^{b} f=f(c)(b-a).\]
Prove the Integral Mean Value Theorem.
(Generalized Integral Mean Value Theorem)
If \(f\) and \(g\) are continuous on \([a, b]\) and \(g(x)>0\) for all \(x \in[a, b],\) then there exists \(c \in[a, b]\) such that
\[\int_{a}^{b} f g=f(c) \int_{a}^{b} g.\]
Prove the Generalized Integral Mean Value Theorem.