# 7.5: The Fundamental Theorem of Calculus

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$
##### Theorem $$\PageIndex{1}$$

(Fundamental Theorem of Calculus)

Suppose $$f$$ is integrable on $$[a, b] .$$ If $$F$$ is continuous on $$[a, b]$$ and differentiable on $$(a, b)$$ with $$F^{\prime}(x)=f(x)$$ for all $$x \in(a, b),$$ then

$\int_{a}^{b} f=F(b)-F(a).$

Proof

Given $$\epsilon>0,$$ let $$P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$$ be a partition of $$[a, b]$$ for which

$U(f, P)-L(f, P)<\epsilon .$

For $$i=1,2, \ldots, n,$$ let $$t_{i} \in\left(x_{i-1}, x_{i}\right)$$ be points for which

$F\left(x_{i}\right)-F\left(x_{i-1}\right)=f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right).$

Then

$\sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n}\left(F\left(x_{i}\right)-F\left(x_{i-1}\right)\right)=F(b)-F(a).$

But

$L(f, P) \leq \sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \leq U(f, P),$

so

$\left|F(b)-F(a)-\int_{a}^{b} f\right|<\epsilon .$

Since $$\epsilon$$ was arbitrary, we conclude that

$\int_{a}^{b} f=F(b)-F(a).$

Q.E.D.

##### Proposition $$\PageIndex{2}$$

(Integration by parts)

Suppose $$f$$ and $$g$$ are integrable

on $$[a, b] .$$ If $$F$$ and $$G$$ are continuous on $$[a, b]$$ and differentiable on $$(a, b)$$ with $$F^{\prime}(x)=f(x)$$ and $$G^{\prime}(x)=g(x)$$ for all $$x \in(a, b),$$ then

$\int_{a}^{b} F(x) g(x) d x=F(b) G(b)-F(a) G(a)-\int_{a}^{b} f(x) G(x) d x.$

Proof

By the Fundamental Theorem of Calculus,

$\int_{a}^{b}(F(x) g(x)+f(x) G(x)) d x=F(b) G(b)-F(a) G(a).$

Q.E.D.

## 7.5.1 The other Fundamental Theorem of Calculus

##### Proposition $$\PageIndex{3}$$

Suppose $$f$$ is integrable on $$[a, b]$$ and $$F:[a, b] \rightarrow \mathbb{R}$$ is defined by

$F(x)=\int_{a}^{x} f(t) d t.$

Then $$F$$ is uniformly continuous on $$[a, b] .$$

Proof

Let $$\epsilon>0$$ be given and let $$M>0$$ be such that $$|f(x)| \leq M$$ for all $$x \in[a, b] .$$ Then for any $$x, y \in[a, b]$$ with $$x<y$$ and $$y-x<\frac{e}{M}$$,

$|F(y)-F(x)|=\left|\int_{x}^{y} f(t) d t\right| \leq M(y-x)<\epsilon .$

Hence $$F$$ is uniformly continuous on $$[a, b] . \quad$$ Q.E.D.

The following theorem is often considered to be part of the Fundamental Theorem of Calculus.

##### Theorem $$\PageIndex{4}$$

Suppose $$f$$ is integrable on $$[a, b]$$ and continuous at $$u \in(a, b) .$$ If $$F:[a, b] \rightarrow \mathbb{R}$$ is defined by

$F(x)=\int_{a}^{x} f(t) d t,$

then $$F$$ is differentiable at $$u$$ and $$F^{\prime}(u)=f(u)$$.

Proof

Let $$\epsilon>0$$ be given and choose $$\delta>0$$ such that $$|f(x)-f(u)|<\epsilon$$ whenever $$|x-u|<\delta .$$ Then if $$0<h<\delta,$$ we have

\begin{aligned}\left|\frac{F(u+h)-F(u)}{h}-f(u)\right| &=\left|\frac{1}{h} \int_{u}^{u+h} f(t) d t-f(u)\right| \\ &=\left|\frac{1}{h} \int_{u}^{u+h}(f(t)-f(u)) d t\right| \\ &<\epsilon . \end{aligned}

If $$-\delta<h<0,$$ then

\begin{aligned}\left|\frac{F(u+h)-F(u)}{h}-f(u)\right| &=\left|-\frac{1}{h} \int_{u+h}^{u} f(t) d t-f(u)\right| \\ &=\left|\frac{1}{h} \int_{u+h}^{u} f(t) d t+f(u)\right| \\ &=\left|\frac{1}{h} \int_{u+h}^{u} f(t) d t-\frac{1}{h} \int_{u+h}^{u} f(u) d t\right| \\ &=\left|\frac{1}{h} \int_{u+h}^{u}(f(t)-f(u)) d t\right| \\ &<\epsilon . \end{aligned}

Hence

$F^{\prime}(u)=\lim _{h \rightarrow 0} \frac{F(u+h)-F(u)}{h}=f(u) .$

Q.E.D.

##### Proposition $$\PageIndex{5}$$

If $$a<b$$ and $$f$$ is continuous on $$[a, b],$$ then there exists a function $$F:[a, b] \rightarrow \mathbb{R}$$ which is continuous on $$[a, b]$$ with $$F^{\prime}(x)=f(x)$$ for all $$x \in(a, b) .$$

Proof

Let

$F(x)=\int_{a}^{x} f(t) d t .$

Q.E.D.

##### Example $$\PageIndex{1}$$

If

$g(x)=\int_{0}^{x} \sqrt{1+t^{4}} d t,$

then $$g^{\prime}(x)=\sqrt{1+x^{4}}$$.

##### Proposition $$\PageIndex{6}$$

(Integration by substitution)

Suppose $$I$$ is an open interval, $$\varphi: I \rightarrow \mathbb{R}, a<b,[a, b] \subset I,$$ and $$\varphi^{\prime}$$ is continuous on $$[a, b] .$$ If $$f: \varphi([a, b]) \rightarrow \mathbb{R}$$ is continuous, then

$\int_{\varphi(a)}^{\varphi(b)} f(u) d u=\int_{a}^{b} f(\varphi(x)) \varphi^{\prime}(x) d x.$

Proof

If $$m$$ and $$M$$ are the minimum and maximum values, respectively, of $$\varphi$$ on $$[a, b],$$ then $$\varphi([a, b])=[m, M] .$$ If $$m=M,$$ then $$\varphi(x)=m$$ for all $$x \in[a, b],$$ and both sides of $$(7.5 .17)$$ are $$0 .$$ So we may assume $$m<M .$$ Let $$F$$ be a function which is continuous on $$[m, M]$$ with $$F^{\prime}(u)=f(u)$$ for every $$u \in(m, M) .$$ Let $$g=F \circ \varphi .$$ Then

$g^{\prime}(x)=F^{\prime}(\varphi(x)) \varphi^{\prime}(x)=f(\varphi(x)) \varphi^{\prime}(x).$

So if $$\varphi(a) \leq \varphi(b)$$,

\begin{aligned} \int_{a}^{b} f(\varphi(x)) \varphi^{\prime}(x) d x &=g(b)-g(a) \\ &=F(\varphi(b))-F(\varphi(a)) \\ &=\int_{\varphi(a)}^{\varphi(b)} f(u) d u. \end{aligned}

If $$\varphi(a)>\varphi(b),$$ then

\begin{aligned} \int_{a}^{b} f(\varphi(x)) \varphi^{\prime}(x) d x &=g(b)-g(a) \\ &=F(\varphi(b))-F(\varphi(a)) \\ &=-(F(\varphi(a))-F(\varphi(b))) \\ &=-\int_{\varphi(b)}^{\varphi(a)} f(u) d u \\ &=\int_{\varphi(a)}^{\varphi(b)} f(u) d u. \end{aligned}

Q.E.D.

##### Exercise $$\PageIndex{1}$$

Evaluate

$\int_{0}^{1} u \sqrt{u+1} d u$

using (a) integration by parts and (b) substitution.

##### Exercise $$\PageIndex{2}$$

Suppose $$\varphi: \mathbb{R} \rightarrow \mathbb{R}$$ is differentiable on $$\mathbb{R}$$ and periodic with period $$1(\text { that is, } \varphi(x+1)=\varphi(x) \text { for every } x \in \mathbb{R}) .$$ Show that for any continuous function $$f: \mathbb{R} \rightarrow \mathbb{R}$$,

$\int_{0}^{1} f(\varphi(x)) \varphi^{\prime}(x) d x=0.$

##### Theorem $$\PageIndex{7}$$

(Integral Mean Value Theorem)

If $$f$$ is continuous on $$[a, b],$$ then there exists $$c \in[a, b]$$ such that

$\int_{a}^{b} f=f(c)(b-a).$

##### Exercise $$\PageIndex{3}$$

Prove the Integral Mean Value Theorem.

##### Theorem $$\PageIndex{8}$$

(Generalized Integral Mean Value Theorem)

If $$f$$ and $$g$$ are continuous on $$[a, b]$$ and $$g(x)>0$$ for all $$x \in[a, b],$$ then there exists $$c \in[a, b]$$ such that

$\int_{a}^{b} f g=f(c) \int_{a}^{b} g.$

##### Exercise $$\PageIndex{4}$$

Prove the Generalized Integral Mean Value Theorem.

This page titled 7.5: The Fundamental Theorem of Calculus is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform.