# 8.4: The Logarithm Functions

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Definition

Given a positive real number $$x,$$ we call

$\log (x)=\int_{1}^{x} \frac{1}{t} d t$

the logarithm of $$x .$$

Note that $$\log (1)=0, \log (x)<0$$ when $$0<x<1,$$ and $$\log (x)>0$$ when $$x>1 .$$

## Proposition $$\PageIndex{1}$$

The function $$f(x)=\log (x)$$ is an increasing, differentiable function with

$f^{\prime}(x)=\frac{1}{x}$

for all $$x>0 .$$

Proof

Using the Fundamental Theorem of Calculus, we have

$f^{\prime}(x)=\frac{1}{x}>0$

for all $$x>0,$$ from which the result follows. $$\quad$$ Q.E.D.

## Proposition $$\PageIndex{2}$$

For any $$x>0$$,

$\log \left(\frac{1}{x}\right)=-\log (x).$

Proof

Using the substitution $$t=\frac{1}{u},$$ we have

$\log \left(\frac{1}{x}\right)=\int_{1}^{\frac{1}{x}} \frac{1}{t} d t=\int_{1}^{x} u\left(-\frac{1}{u^{2}}\right) d u=-\int_{1}^{x} \frac{1}{u} d u=-\log (x).$

Q.E.D.

## Proposition $$\PageIndex{3}$$

For any positive real numbers $$x$$ and $$y,$$

$\log (x y)=\log (x)+\log (y).$

Proof

Using the substitution $$t=x u,$$ we have

\begin{aligned} \log (x y) &=\int_{1}^{x y} \frac{1}{t} d t \\ &=\int_{\frac{1}{x}}^{y} \frac{x}{x u} d u \\ &=\int_{\frac{1}{x}}^{1} \frac{1}{u} d u+\int_{1}^{y} \frac{1}{u} d u \\ &=-\int_{1}^{\frac{1}{x}} \frac{1}{u} d u+\log (y) \\ &=-\log \left(\frac{1}{x}\right)+\log (y) \\ &=\log (x)+\log (y). \end{aligned}

Q.E.D.

## Proposition $$\PageIndex{4}$$

If $$r \in \mathbb{Q}$$ and $$x$$ is a positive real number, then

$\log \left(x^{r}\right)=r \log (x).$

Proof

Using the substitution $$t=u^{r},$$ we have

$\log \left(x^{r}\right)=\int_{1}^{x^{r}} \frac{1}{t} d t=\int_{1}^{x} \frac{r u^{r-1}}{u^{r}} d u=r \int_{1}^{x} \frac{1}{u} d u=r \log (x).$

Q.E.D.

## Proposition $$\PageIndex{5}$$

$$\lim _{x \rightarrow+\infty} \log (x)=+\infty$$ and $$\lim _{x \rightarrow 0+} \log (x)=-\infty .$$

Proof

Given a real number $$M,$$ choose an integer $$n$$ for which $$n \log (2)>M$$ (there exists such an $$n$$ since $$\log (2)>0$$ ). Then for any $$x>2^{n}$$, we have

$\log (x)>\log \left(2^{n}\right)=n \log (2)>M.$

Hence $$\lim _{x \rightarrow+\infty} \log (x)=+\infty$$.

Similarly, given any real number $$M,$$ we may choose an integer $$n$$ for which $$-n \log (2)<M .$$ Then for any $$0<x<\frac{1}{2^{n}},$$ we have

$\log (x)<\log \left(\frac{1}{2^{n}}\right)=-n \log (2)<M.$

Hence $$\lim _{x \rightarrow 0+} \log (x)=-\infty . \quad$$ Q.E.D.

Note that the logarithm function has domain $$(0,+\infty)$$ and range $$(-\infty,+\infty)$$.

## Exercise $$\PageIndex{1}$$

Show that for any rational number $$\alpha>0$$,

$\lim _{x \rightarrow+\infty} x^{\alpha}=+\infty .$

## Proposition $$\PageIndex{6}$$

For any rational number $$\alpha>0$$,

$\lim _{x \rightarrow+\infty} \frac{\log (x)}{x^{\alpha}}=0.$

Proof

Choose a rational number $$\beta$$ such that $$0<\beta<\alpha .$$ Now for any $$t>1$$,

$\frac{1}{t}<\frac{1}{t} t^{\beta}=\frac{1}{t^{1-\beta}}.$

Hence

$\log (x)=\int_{1}^{x} \frac{1}{t} d t<\int_{1}^{x} \frac{1}{t^{1-\beta}} d t=\frac{x^{\beta}-1}{\beta}<\frac{x^{\beta}}{\beta}$

whenever $$x>1 .$$ Thus

$0<\frac{\log (x)}{x^{\alpha}}<\frac{1}{\beta x^{\alpha-\beta}}$

for $$x>1 .$$ But

$\lim _{x \rightarrow+\infty} \frac{1}{\beta x^{\alpha-\beta}}=0,$

so

$\lim _{x \rightarrow+\infty} \frac{\log (x)}{x^{\alpha}}=0.$

Q.E.D.

## Exercise $$\PageIndex{2}$$

Show that

$\lim _{x \rightarrow 0^{+}} x^{\alpha} \log (x)=0$

for any rational number $$\alpha>0$$.

This page titled 8.4: The Logarithm Functions is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform.