8.4: The Logarithm Functions
- Page ID
- 22688
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Given a positive real number \(x,\) we call
\[\log (x)=\int_{1}^{x} \frac{1}{t} d t\]
the logarithm of \(x .\)
Note that \(\log (1)=0, \log (x)<0\) when \(0<x<1,\) and \(\log (x)>0\) when \(x>1 .\)
The function \(f(x)=\log (x)\) is an increasing, differentiable function with
\[f^{\prime}(x)=\frac{1}{x}\]
for all \(x>0 .\)
- Proof
-
Using the Fundamental Theorem of Calculus, we have
\[f^{\prime}(x)=\frac{1}{x}>0\]
for all \(x>0,\) from which the result follows. \(\quad\) Q.E.D.
For any \(x>0\),
\[\log \left(\frac{1}{x}\right)=-\log (x).\]
- Proof
-
Using the substitution \(t=\frac{1}{u},\) we have
\[\log \left(\frac{1}{x}\right)=\int_{1}^{\frac{1}{x}} \frac{1}{t} d t=\int_{1}^{x} u\left(-\frac{1}{u^{2}}\right) d u=-\int_{1}^{x} \frac{1}{u} d u=-\log (x).\]
Q.E.D.
For any positive real numbers \(x\) and \(y,\)
\[\log (x y)=\log (x)+\log (y).\]
- Proof
-
Using the substitution \(t=x u,\) we have
\[\begin{aligned} \log (x y) &=\int_{1}^{x y} \frac{1}{t} d t \\ &=\int_{\frac{1}{x}}^{y} \frac{x}{x u} d u \\ &=\int_{\frac{1}{x}}^{1} \frac{1}{u} d u+\int_{1}^{y} \frac{1}{u} d u \\ &=-\int_{1}^{\frac{1}{x}} \frac{1}{u} d u+\log (y) \\ &=-\log \left(\frac{1}{x}\right)+\log (y) \\ &=\log (x)+\log (y). \end{aligned}\]
Q.E.D.
If \(r \in \mathbb{Q}\) and \(x\) is a positive real number, then
\[\log \left(x^{r}\right)=r \log (x).\]
- Proof
-
Using the substitution \(t=u^{r},\) we have
\[\log \left(x^{r}\right)=\int_{1}^{x^{r}} \frac{1}{t} d t=\int_{1}^{x} \frac{r u^{r-1}}{u^{r}} d u=r \int_{1}^{x} \frac{1}{u} d u=r \log (x).\]
Q.E.D.
\(\lim _{x \rightarrow+\infty} \log (x)=+\infty\) and \(\lim _{x \rightarrow 0+} \log (x)=-\infty .\)
- Proof
-
Given a real number \(M,\) choose an integer \(n\) for which \(n \log (2)>M\) (there exists such an \(n\) since \(\log (2)>0\) ). Then for any \(x>2^{n}\), we have
\[\log (x)>\log \left(2^{n}\right)=n \log (2)>M.\]
Hence \(\lim _{x \rightarrow+\infty} \log (x)=+\infty\).
Similarly, given any real number \(M,\) we may choose an integer \(n\) for which \(-n \log (2)<M .\) Then for any \(0<x<\frac{1}{2^{n}},\) we have
\[\log (x)<\log \left(\frac{1}{2^{n}}\right)=-n \log (2)<M.\]
Hence \(\lim _{x \rightarrow 0+} \log (x)=-\infty . \quad\) Q.E.D.
Note that the logarithm function has domain \((0,+\infty)\) and range \((-\infty,+\infty)\).
Show that for any rational number \(\alpha>0\),
\[\lim _{x \rightarrow+\infty} x^{\alpha}=+\infty .\]
For any rational number \(\alpha>0\),
\[\lim _{x \rightarrow+\infty} \frac{\log (x)}{x^{\alpha}}=0.\]
- Proof
-
Choose a rational number \(\beta\) such that \(0<\beta<\alpha .\) Now for any \(t>1\),
\[\frac{1}{t}<\frac{1}{t} t^{\beta}=\frac{1}{t^{1-\beta}}.\]
Hence
\[\log (x)=\int_{1}^{x} \frac{1}{t} d t<\int_{1}^{x} \frac{1}{t^{1-\beta}} d t=\frac{x^{\beta}-1}{\beta}<\frac{x^{\beta}}{\beta}\]
whenever \(x>1 .\) Thus
\[0<\frac{\log (x)}{x^{\alpha}}<\frac{1}{\beta x^{\alpha-\beta}}\]
for \(x>1 .\) But
\[\lim _{x \rightarrow+\infty} \frac{1}{\beta x^{\alpha-\beta}}=0,\]
so
\[\lim _{x \rightarrow+\infty} \frac{\log (x)}{x^{\alpha}}=0.\]
Q.E.D.
Show that
\[\lim _{x \rightarrow 0^{+}} x^{\alpha} \log (x)=0\]
for any rational number \(\alpha>0\).