Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

7.7: An Improper Integral

  • Page ID
    25413
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Definition

    If \(f\) integrable on \([a, b]\) for all \(b>a\) and

    \[\lim _{b \rightarrow+\infty} \int_{a}^{b} f(x) d x\]

    exists, then we define

    \[\int_{a}^{+\infty} f(x) d x=\lim _{b \rightarrow+\infty} \int_{a}^{b} f(x) d x.\]

    If \(f\) is integrable on \([a, b]\) for all \(a<b\) and

    \[\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x\]

    exists, then we define

    \[\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x.\]

    Both of these integrals are examples of improper integrals.

    Proposition \(\PageIndex{1}\)

    Suppose \(f\) is continuous on \([a, \infty)\) and \(f(x) \geq 0\) for all \(x \geq a .\) If there exists \(g:[a,+\infty) \rightarrow \mathbb{R}\) for which

    \[\int_{a}^{+\infty} g(x) d x\]

    exists and \(g(x) \geq f(x)\) for all \(x \geq a\), then

    \[\int_{a}^{+\infty} f(x) d x\]

    exists.

    Exercise \(\PageIndex{1}\)

    Prove the preceding proposition.

    Example \(\PageIndex{1}\)

    Suppose

    \[f(x)=\frac{1}{1+x^{2}}\]

    and

    \[g(x)=\left\{\begin{array}{ll}{1,} & {\text { if } 0 \leq x<1}, \\ {\frac{1}{x^{2}},} & {\text { if } x \geq 1}.\end{array}\right.\]

    Then, for \(b>1\)

    \[\int_{0}^{b} g(x) d x=\int_{0}^{1} d x+\int_{1}^{b} \frac{1}{x^{2}} d x=1+1-\frac{1}{b}=2-\frac{1}{b},\]

    so

    \[\int_{0}^{+\infty} g(x) d x=\lim _{b \rightarrow \infty}\left(2-\frac{1}{b}\right)=2.\]

    Since \(0<f(x) \leq g(x)\) for all \(x \geq 0\), it follows that

    \[\int_{0}^{+\infty} \frac{1}{1+x^{2}} d x\]

    exists, and, moreover,

    \[\int_{0}^{+\infty} \frac{1}{1+x^{2}} d x<2.\]

    Also, the substitution \(u=-x\) shows that

    \[\int_{-\infty}^{0} \frac{1}{1+x^{2}} d x=-\int_{+\infty}^{0} \frac{1}{1+u^{2}} d u=\int_{0}^{+\infty} \frac{1}{1+u^{2}} d u.\]

    • Was this article helpful?