Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

3.5.E: Problems on Linear Spaces (Exercises)

  • Page ID
    22263
  •  
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Exercise \(\PageIndex{1}\)

    Prove that \(F^{n}\) in Example \((\mathrm{b})\) is a vector space, i.e., that it satisfies all laws stated in Theorem 1 in §§1-3; similarly for \(W\) in Example (d).

    Exercise \(\PageIndex{2}\)

    Verify that dot products in \(C^{n}\) obey the laws \((\mathrm{i})-\left(\mathrm{v}^{\prime}\right) .\) Which of these laws would fail if these products were defined by 
    \[
    x \cdot y=\sum_{k=1}^{n} x_{k} y_{k} \text { instead of } x \cdot y=\sum_{k=1}^{n} x_{k} \overline{y}_{k} ?
    \]
    How would this affect the properties of absolute values given in \(\left(\mathrm{a}^{\prime}\right)-\left(\mathrm{d}^{\prime}\right) ?\)

    Exercise \(\PageIndex{3}\)

    Complete the proof of formulas \(\left(\mathrm{a}^{\prime}\right)-\left(\mathrm{d}^{\prime}\right)\) for Euclidean spaces. What change would result if property (ii) of dot products were restated as
    \[
    " x \cdot x \geq 0 \text { and } \overrightarrow{0} \cdot \overrightarrow{0}=0^{\prime \prime} ?
    \]

    Exercise \(\PageIndex{4}\)

    Define orthogonality, parallelism and angles in a general Euclidean space following the pattern of §§1-3 (text and Problem 7 there). Show that \(u=\overrightarrow{0}\) iff \(u\) is orthogonal to all vectors of the space.

    Exercise \(\PageIndex{5}\)

    Define the basic unit vectors \(e_{k}\) in \(C^{n}\) exactly as in \(E^{n},\) and prove
    Theorem 2 in §§1-3 for \(C^{n}\left(\text { replacing } E^{1} \text { by } C\right).\) Also, do Problem 5\((\mathrm{a})\) of §§1-3 for \(C^{n}\).

    Exercise \(\PageIndex{6}\)

    Define hyperplanes in \(C^{n}\) as in Definition 3 of §§4-6, and prove Theorem 1 stated there, for \(C^{n} .\) Do also Problems \(4-6\) there for \(C^{n}\) (replacing \(E^{1}\) by \(C )\) and Problem 4 there for vector spaces in general (replacing \(E^{1}\) by the scalar field \(F ) .\)

    Exercise \(\PageIndex{7}\)

    Do Problem 3 of §§4-6 for general Euclidean spaces (real or complex). Note: Do not replace \(E^{1}\) by \(C\) in the definition of a line and a line segment.

    Exercise \(\PageIndex{8}\)

    A finite set of vectors \(B=\left\{x_{1}, \ldots, x_{m}\right\}\) in a linear space \(V\) over \(F\) is said to be independent iff
    \[
    \left(\forall a_{1}, a_{2}, \ldots, a_{m} \in F\right) \quad\left(\sum_{i=1}^{m} a_{i} x_{i}=\overrightarrow{0} \Longrightarrow a_{1}=a_{2}=\cdots=a_{m}=0\right).
    \]
    Prove that if \(B\) is independent, then
    (i) \(\overrightarrow{0} \notin B\);
    (ii) each subset of \(B\) is independent \((\emptyset \text { counts as independent }) ;\) and
    (iii) if for some scalars \(a_{i}, b_{i} \in F\),
    \[
    \sum_{i=1}^{m} a_{i} x_{i}=\sum_{i=1}^{m} b_{i} x_{i},
    \]
    then \(a_{i}=b_{i}, i=1,2, \ldots, m\).

    Exercise \(\PageIndex{9}\)

    Let \(V\) be a vector space over \(F\) and let \(A \subseteq V .\) By the span of \(A\) in \(V\), denoted \(\operatorname{span}(A),\) is meant the set of all "linear combinations" of vectors from \(A,\) i.e., all vectors of the form
    \[
    \sum_{i=1}^{m} a_{i} x_{i}, \quad a_{i} \in F, x_{i} \in A, m \in N.
    \]
    Show that \(\operatorname{span}(A)\) is itself a vector space \(V^{\prime} \subseteq V\) (a subspace of \(V )\) over the same field \(F,\) with the operations defined in \(V .\) (We say that A spans \(V^{\prime} .\) Show that in \(E^{n}\) and \(C^{n},\) the basic unit vectors span the entire space.