Skip to main content
Mathematics LibreTexts

4.5.E: Problems on Monotone Functions

  • Page ID
    23722
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(\PageIndex{1}\)

    Complete the proofs of Theorems 1 and \(2 .\) Give also an independent (analogous) proof for nonincreasing functions.

    Exercise \(\PageIndex{2}\)

    Discuss Examples \((\mathrm{d})\) and \((\mathrm{e})\) of §1 again using Theorems \(1-3\).

    Exercise \(\PageIndex{3}\)

    Show that Theorem 3 holds also if \(f\) is piecewise monotone on \((a, b),\) i.e., monotone on each of a sequence of intervals whose union is \((a, b) .\)

    Exercise \(\PageIndex{4}\)

    Consider the monotone function \(f\) defined in Problems 5 and 6 of Chapter 3, §11. Show that under the standard metric in \(E^{1}, f\) is continuous on \(E^{1}\) and \(f^{-1}\) is continuous on \((0,1) .\) Additionally, discuss continuity under the metric \(\rho^{\prime} .\)

    Exercise \(\PageIndex{5}\)

    \(\Rightarrow\) 5. Prove that if \(f\) is monotone on \((a, b) \subseteq E^{*},\) it has at most countably many discontinuities in \((a, b)\).
    [Hint: Let \(f \uparrow .\) By Theorem \(3,\) all discontinuities of \(f\) correspond to mutually disjoint intervals \(\left(f\left(p^{-}\right), f\left(p^{+}\right)\right) \neq \emptyset .\) (Why?) Pick a rational from each such interval, so these rationals correspond one to one to the discontinuities and form a countable set (Chapter 1, §9)].

    Exercise \(\PageIndex{6}\)

    Continuing Problem 17 of Chapter 3, §14, let
    \[
    G_{11}=\left(\frac{1}{3}, \frac{2}{3}\right), \quad G_{21}=\left(\frac{1}{9}, \frac{2}{9}\right), G_{22}=\left(\frac{7}{9}, \frac{8}{9}\right), \text { and so on; }
    \]
    that is, \(G_{m i}\) is the \(i\) th open interval removed from \([0,1]\) at the \(m\) th step of the process \( (i=1,2, \ldots, 2^{m-1}, m=1,2, \ldots \text { ad infinitum} )\).
    Define \(F :[0,1] \rightarrow E^{1}\) as follows:
    (i) \(F(0)=0\);
    (ii) if \(x \in G_{m i},\) then \(F(x)=\frac{2 i-1}{2^{m}} ;\) and
    (iii) if \(x\) is in none of the \(G_{m i}(\text { i.e., } x \in P),\) then
    \[
    F(x)=\sup \{ F(y) | y \in \bigcup_{m, i} G_{m i}, y<x \} .
    \]
    Show that \(F\) is nondecreasing and continuous on \([0,1]\). (\(F\) is called Cantor's function.)

    Exercise \(\PageIndex{7}\)

    Restate Theorem 3 for the case where \(f\) is monotone on \(A,\) where \(A\) is a (not necessarily open) interval. How about the endpoints of \(A ?\)


    4.5.E: Problems on Monotone Functions is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?