$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 2.E: Calculus in the 17th and 18th Centuries (Exercises)

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

## Q1

Use the geometric series to obtain the series

\begin{align*} \ln (1+x) &= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \cdots \\ &= \sum_{n=0}^{\infty }\frac{(-1)^n}{n+1}x^{n+1} \end{align*}

## Q2

Without using Taylor’s Theorem, represent the following functions as power series expanded about $$0$$ (i.e., in the form $$\sum_{n=0}^{\infty }a_n x^n$$).

1. $$\ln (1 - x^2)$$
2. $$\frac{x}{1 + x^2}$$
3. $$\arctan (x^3)$$
4. $$\ln (2 + x)$$ [Hint: $$2 + x = 2\left (1 + \frac{x}{2} \right )$$]

## Q3

Let $$a$$ be a positive real number. Find a power series for $$a^x$$ expanded about $$0$$. [Hint: $$a^x = e^{\ln (a^x)}$$].

## Q4

Represent the function $$\sin x$$ as a power series expanded about a (i.e., in the form $$\sum_{n=0}^{\infty } a_n (x - a)^n$$). n=0 an (x−a)n). [Hint: $$\sin x = \sin (a + x - a)$$].

## Q5

Without using Taylor’s Theorem, represent the following functions as a power series expanded about a for the given value of a (i.e., in the form $$\sum_{n=0}^{\infty } a_n (x - a)^n$$.

1. $$\ln x, a = 1$$
2. $$e^x, a = 3$$
3. $$x^3 + 2x^2 + 3 , a = 1$$
4. $$\frac{1}{x}, a = 5$$

## Q6

Evaluate the following integrals as series.

1. $$\int_{x=0}^{1} e^{x^2}dx$$
2. $$\int_{x=0}^{1} \frac{1}{1 + x^4}dx$$
3. $$\int_{x=0}^{1} \sqrt{1 - x^3}dx$$

2.E: Calculus in the 17th and 18th Centuries (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Eugene Boman and Robert Rogers (OpenSUNY) via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.