$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 5.E: Convergence of the Taylor Series: A “Tayl” of Three Remainders (Exercises)

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

## Q1

Find the Integral form, Lagrange form, and Cauchy form of the remainder for Taylor series for the following functions expanded about the given values of $$a$$.

1. $$f(x) = e^x$$, $$a = 0$$
2. $$f(x) = \sqrt{x}$$, $$a = 1$$
3. $$f(x) = (1 + x)^α$$, $$a = 0$$
4. $$f(x) = \frac{1}{x}$$, $$a = 3$$
5. $$f(x) = \ln x$$, $$a = 2$$
6. $$f(x) = \cos x$$, $$a = \frac{\pi }{2}$$

## Contributor

• Eugene Boman (Pennsylvania State University) and Robert Rogers (SUNY Fredonia)