Skip to main content
Mathematics LibreTexts

1.4: The Complex Plane

  • Page ID
    6469
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Geometry of Complex Numbers

    Because it takes two numbers \(x\) and \(y\) to describe the complex number \(z = x + iy\) we can visualize complex numbers as points in the \(xy\)-plane. When we do this we call it the complex plane. Since \(x\) is the real part of \(z\) we call the \(x\)-axis the real axis. Likewise, the \(y\)-axis is the imaginary axis.

    屏幕快照 2020-08-05 下午10.20.43.png

    Triangle Inequality

    The triangle inequality says that for a triangle the sum of the lengths of any two legs is greater than the length of the third leg.

    屏幕快照 2020-08-05 下午10.22.04.png
    Triangle inequality: \(|AB| + |BC| > |AC|\)

    For complex numbers the triangle inequality translates to a statement about complex magnitudes.

    Precisely: for complex numbers \(z_1, z_2\)

    \[|z_1| + |z_2| \ge |z_1 + z_2| \nonumber \]

    with equality only if one of them is 0 or if \(\text{arg}(z_1) = \text{arg}(z_2)\). This is illustrated in the following figure.

    屏幕快照 2020-08-05 下午10.27.11.png
    Triangle inequality: \[|z_1| + |z_2| \ge |z_1 + z_2| \nonumber \]

    We get equality only if \(z_1\) and \(z_2\) are on the same ray from the origin, i.e. they have the same argument.


    This page titled 1.4: The Complex Plane is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jeremy Orloff (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.