$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 1.4: The Complex Plane

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

## The Geometry of Complex Numbers

Because it takes two numbers $$x$$ and $$y$$ to describe the complex number $$z = x + iy$$ we can visualize complex numbers as points in the $$xy$$-plane. When we do this we call it the complex plane. Since $$x$$ is the real part of $$z$$ we call the $$x$$-axis the real axis. Likewise, the $$y$$-axis is the imaginary axis. ## The Triangle Inequality

The triangle inequality says that for a triangle the sum of the lengths of any two legs is greater than the length of the third leg. Triangle inequality: $$|AB| + |BC| > |AC|$$

For complex numbers the triangle inequality translates to a statement about complex magnitudes.

Precisely: for complex numbers $$z_1, z_2$$

$$|z_1| + |z_2| \ge |z_1 + z_2|$$

with equality only if one of them is 0 or if $$\text{arg}(z_1) = \text{arg}(z_2)$$. This is illustrated in the following figure. Triangle inequality: $$|z_1| + |z_2| \ge |z_1 + z_2|$$

We get equality only if $$z_1$$ and $$z_2$$ are on the same ray from the origin, i.e. they have the same argument.