Skip to main content
Mathematics LibreTexts

5.4: Proof of Cauchy's integral formula for derivatives

  • Page ID
    6498
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Recall that Cauchy’s integral formula in Equation 5.3.1 says

    \[f^{(n)} (z) = \dfrac{n!}{2 \pi i } \int_C \dfrac{f(w)}{(w - z)^{n + 1}} \ dw, \ \ n = 0, 1, 2, ... \nonumber \]

    First we’ll offer a quick proof which captures the reason behind the formula, and then a formal proof.

    Quick Proof

    We have an integral representation for \(f(z)\), \(z \in A\), we use that to find an integral representation for \(f'(z)\), \(z \in A\).

    \[f'(z) = \dfrac{d}{dz} \left[\dfrac{1}{2\pi i} \int_C \dfrac{f(w)}{w - z} \ dw \right] = \dfrac{1}{2\pi i} \int_C \dfrac{d}{dz} \left(\dfrac{f(w)}{w - z}\right)\ dw = \dfrac{1}{2\pi i} \int_C \dfrac{f(w)}{(w - z)^2}\ dw \nonumber \]

    (Note, since \(z \in A\) and \(w \in C\), we know that \(w - z \ne 0\)) Thus,

    \[f'(z) = \dfrac{1}{2\pi i} \int_C \dfrac{f(w)}{(w - z)^2}\ dw \nonumber \]

    Now, by iterating this process, i.e. by mathematical induction, we can show the formula for higher order derivatives.

    Formal Proof

    We do this by taking the limit of

    \[\lim_{\Delta \to 0} \dfrac{f(z + \Delta z) - f(z)}{\Delta z} \nonumber \]

    using the integral representation of both terms:

    \[f(z + \Delta z) = \dfrac{1}{2\pi i} \int_C \dfrac{f(w)}{w - z - \Delta z}\ dw, \ \ \ \ \ \ f(z) = \dfrac{1}{2\pi i} \int_C \dfrac{f(w)}{w - z}\ dw \nonumber \]

    Now, using a little algebraic manipulation we get

    \[\begin{align*} \dfrac{f(z + \Delta z) - f(z)}{\Delta z} &= \dfrac{1}{2 \pi i \Delta z} \int_C \dfrac{f(w)}{w - z - \Delta z} - \dfrac{f(w)}{w - z} \ dw \\[4pt] & = \dfrac{1}{2 \pi i \Delta z} \int_C \dfrac{f(w) \Delta z}{(w - z - \Delta z)(w - z)} \ dw \\[4pt] &= \dfrac{1}{2\pi i} \int_C \dfrac{f(w)}{(w - z)^2 - \Delta z (w - z)}\ dw \end{align*} \]

    Letting \(\Delta z\) go to 0, we get Cauchy's formula for \(f'(z)\):

    \[f' (z) = \dfrac{1}{2\pi i} \int_C \dfrac{f(w)}{(w - z)^2}\ dw \nonumber \]

    There is no problem taking the limit under the integral sign because everything is continuous and the denominator is never 0.


    This page titled 5.4: Proof of Cauchy's integral formula for derivatives is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jeremy Orloff (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.