$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 8.5: Singularities

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

## Definition: Singular Function

A function $$f(z)$$ is singular at a point $$z_0$$ if it is not analytic at $$z_0$$

## Definition: Isolated Singularity

For a function $$f(z)$$, the singularity $$z_0$$ is an isolated singularity if $$f$$ is analytic on the deleted disk $$0 < |z - z_0| < r$$ for some $$r > 0$$.

## Example $$\PageIndex{1}$$

$$f(z) = \dfrac{}{}$$ has isolated singularities at $$z = 0$$, $$\pm i$$.

## Example $$\PageIndex{2}$$

$$f(z) = e^{1/z}$$ has an isolated singularity at $$z = 0$$.

## Example $$\PageIndex{3}$$

$$f(z) = \log (z)$$ has a singularity at $$z = 0$$, but it is not isolated because a branch cut, starting at $$z = 0$$, is needed to have a region where $$f$$ is analytic.

## Example $$\PageIndex{4}$$

$$f(z) = \dfrac{1}{\sin (\pi /z)}$$ has singularities at $$z = 0$$ and $$z = 1/n$$ for $$n = \pm, \pm 2, ...$$ The singularities at $$\pm 1 /n$$ are isolated, but the one at $$z = 0$$ is not isolated.

8.5: Singularities is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jeremy Orloff (MIT OpenCourseWare) via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.