Skip to main content
Mathematics LibreTexts

10.3: Trigonometric Integrals

  • Page ID
    6532
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The trick here is to put together some elementary properties of \(z = e^{i \theta}\) on the unit circle.

    1. \(e^{-i \theta} = 1/z.\)
    2. \(\cos (\theta) = \dfrac{e^{i \theta} + e^{-i \theta}}{2} = \dfrac{z + 1/z}{2}.\)
    3. \(\sin (\theta) = \dfrac{e^{i \theta} - e^{-i \theta}}{2i} = \dfrac{z - 1/z}{2i}.\)

    We start with an example. After that we’ll state a more general theorem.

    Example \(\PageIndex{1}\)

    Compute

    \[\int_{0}^{2\pi} \dfrac{d \theta}{1 + a^2 - 2a \cos (\theta)}. \nonumber \]

    Assume that \(|a| \ne 1\).

    Solution

    Notice that \([0, 2\pi]\) is the interval used to parametrize the unit circle as \(z = e^{i \theta}\). We need to make two substitutions:

    \[\begin{array} {rcl} {\cos (\theta)} & = & {\dfrac{z + 1/z}{2}} \\ {dz} & = & {i e^{i \theta} \ d\theta \ \ \ \ \Leftrightarrow \ \ \ \ d \theta = \dfrac{dz}{iz}} \end{array} \nonumber \]

    Making these substitutions we get

    \[\begin{array} {rcl} {I} & = & {\int_{0}^{2\pi} \dfrac{d \theta}{1 + a^2 - 2a \cos (\theta)}} \\ {} & = & {\int_{|z| = 1} \dfrac{1}{1 + a^2 - 2a (z + 1/z)/2} \cdot \dfrac{dz}{iz}} \\ {} & = & {\int_{|z| = 1} \dfrac{1}{i((1 + a^2) z - a(z^2 +1))} \ dz.} \end{array} \nonumber \]

    So, let

    \[f(z) = \dfrac{1}{i((1 + a^2) z - a(z^2 + 1))}. \nonumber \]

    The residue theorem implies

    \[I = 2\pi i \sum \text{ residues of } f \text{ inside the unit circle.} \nonumber \]

    We can factor the denominator:

    \[f(z) = \dfrac{-1}{ia (z - a) (z - 1/a)}. \nonumber \]

    The poles are at \(a\), \(1/a\). One is inside the unit circle and one is outside.

    If \(|a| > 1\) then \(1/a\) is inside the unit circle and \(\text{Res} (f, 1/a) = \dfrac{1}{i(a^2 - 1)}\)

    If \(|a| < 1\) then \(a\) is inside the unit circle and \(\text{Res} (f, a) = \dfrac{1}{i(1 - a^2)}\)

    We have

    \[I = \begin{cases} \dfrac{2 \pi}{a^2 - 1} & \text{if } |a| > 1 \\ \dfrac{2 \pi}{1 - a^2} & \text{if } |a| < 1 \end{cases} \nonumber \]

    The example illustrates a general technique which we state now.

    Theorem \(\PageIndex{1}\)

    Suppose \(R(x, y)\) is a rational function with no poles on the circle

    \[x^2 + y^2 = 1 \nonumber \]

    then for

    \[f(z) = \dfrac{1}{iz} R (\dfrac{z + 1/z}{2}, \dfrac{z - 1/z}{2i}) \nonumber \]

    we have

    \[\int_{0}^{2\pi} R(\cos (\theta), \sin (\theta)) \ d \theta = 2 \pi i \sum \text{ residues of } f \text{ inside } |z| = 1. \nonumber \]

    Proof

    We make the same substitutions as in Example 10.4.1. So,

    \[\int_{0}^{2\pi} R(\cos (\theta), \sin (\theta)) \ d \theta = \int_{|z| = 1} R (\dfrac{z + 1/z}{2}, \dfrac{z - 1/z}{2i}) \dfrac{dz}{iz} \nonumber \]

    The assumption about poles means that \(f\) has no poles on the contour \(|z| = 1\). The residue theorem now implies the theorem.


    This page titled 10.3: Trigonometric Integrals is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jeremy Orloff (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.