Skip to main content
Mathematics LibreTexts

11.4: Digression to harmonic functions

  • Page ID
    6540
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Theorem \(\PageIndex{1}\)

    If \(u\) and \(v\) are harmonic conjugates and \(g = u + iv\) has \(g'(z_0) \ne 0\), then the level curves of \(u\) and \(v\) through \(z_0\) are orthogonal.

    Note

    We proved this in an earlier topic using the Cauchy-Riemann equations. Here will make an argument involving conformal maps.

    Proof

    First we’ll examine how \(g\) maps the level curve \(u(x, y) = a\). Since \(g = u + iv\), the image of the level curve is \(w = a + iv\), i.e it’s (contained in) a vertical line in the \(w\)-plane. Likewise, the level curve \(v(x, y) = b\) is mapped to the horizontal line \(w = u + ib\).

    Thus, the images of the two level curves are orthogonal. Since \(g\) is conformal it preserves the angle between the level curves, so they must be orthogonal.

    屏幕快照 2020-09-13 下午2.01.44.png
    \(g = u + iv\) maps level curves of \(u\) and \(v\) to grid lines.


    This page titled 11.4: Digression to harmonic functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jeremy Orloff (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.