Skip to main content
Mathematics LibreTexts

13.3: Exponential Type

  • Page ID
    6553
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The Laplace transform is defined when the integral for it converges. Functions of exponential type are a class of functions for which the integral converges for all \(s\) with \(\text{Re} (s)\) large enough.

    Definition

    We say that \(f(t)\) has exponential type \(a\) if there exists an \(M\) such that \(|f(t)| < Me^{at}\) for all \(t \ge 0\).

    Note

    As we’ve defined it, the exponential type of a function is not unique. For example, a function of exponential type 2 is clearly also of exponential type 3. It’s nice, but not always necessary, to find the smallest exponential type for a function.

    Theorem \(\PageIndex{1}\)

    If \(f\) has exponential type \(a\) then \(\mathcal{L} (f)\) converges absolutely for \(\text{Re} (s) > a\).

    Proof

    We prove absolute convergence by bounding

    \[|f(t) e^{-st}|. \nonumber \]

    The key here is that \(\text{Re} (s) > a\) implies \(\text{Re} (a - s) < 0\). So, we can write

    \[\int_{0}^{\infty} |f(t) e^{-st}|\ dt \le \int_{0}^{\infty} |Me^{(a - s)t}|\ dt = \int_{0}^{\infty} Me^{\text{Re} (a - s)t} \ dt \nonumber \]

    The last integral clearly converges when \(\text{Re} (a - s) < 0\). \(\text{RED}\)

    Example \(\PageIndex{1}\)

    Here is a list of some functions of exponential type.

    \[\begin{array} {rclcl} {f(t) = e^{at}} & : & {|f(t)| < 2e^{\text{Re} (a) t}} & \ & {\text{(exponential type Re} (a))} \\ {f(t) = 1} & : & {|f(t)| < 2 = 2e^{0 - t}} & \ & {\text{(exponential type 0)}} \\ {f(t) = \cos (\omega t)} & : & {|f(t)| \le 1} & \ & {\text{(exponential type 0)}} \end{array} \nonumber \]

    In the above, all of the inequalities are for \(t \ge 0\).

    For \(f(t) = t\), it is clear that for any \(a > 0\) there is an \(M\) depending on \(a\) such that \(|f(t)| \le Me^{at}\) for \(t \ge 0\). In fact, it is a simple calculus exercise to show \(M = 1/(ae)\) works. So, \(f(t) = t\) has exponential type \(a\) for any \(a > 0\).

    The same is true of \(t^n\). It’s worth pointing out that this follows because, if \(f\) has exponential type \(a\) and \(g\) has exponential type \(b\) then \(fg\) has exponential type \(a + b\). So, if \(t\) has exponential type \(a\) then \(t^n\) has exponential type \(na\).


    This page titled 13.3: Exponential Type is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jeremy Orloff (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.