Skip to main content
Mathematics LibreTexts

13.6: Table of Laplace transforms

  • Page ID
    51240
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Properties and Rules

    We assume that \(f(t) = 0\) for \(t < 0\).

    Function Transform

    \(\begin{array} {lclcl} {f(t)} & \ \ \ \ \ \ \ \ \ & {F(s) = \int_{0}^{\infty} f(t) e^{-st} \ dt} & \ & {\text{(Definition)}} \\ {af(t) + bg(t)} & \ \ \ \ \ \ \ \ \ & {aF(s) + bG(s)} & \ & {\text{(Linearity)}} \\ {e^{at} f(t)} & \ \ \ \ \ \ \ \ \ & {F(s - a)} & \ & {(s-\text{shift})} \\ {f'(t)} & \ \ \ \ \ \ \ \ \ & {sF(s) - f(0)} & \ & {} \\ {f''(t)} & \ \ \ \ \ \ \ \ \ & {s^2 F(s) - sf(0) - f'(0)} & \ & {} \\ {f^{(n)} (t)} & \ \ \ \ \ \ \ \ \ & {s^n F(s) - s^{n - 1} f(0) - \ \cdot\cdot\cdot - f^{(n - 1)} (0)} & \ & {} \\ {tf(t)} & \ \ \ \ \ \ \ \ \ & {-F'(s)} & \ & {} \\ {t^n f(t)} & \ \ \ \ \ \ \ \ \ & {(-1)^n F^{(n)} (s)} & \ & {} \\ {f(t - a)} & \ \ \ \ \ \ \ \ \ & {e^{-as} F(s)} & \ & {(t-\text{translation or } t-\text{shift})} \\ {\int_{0}^{t} f(\tau) \ d\tau} & \ \ \ \ \ \ \ \ \ & {\dfrac{F(s)}{s}} & \ & {\text{(integration rule)}} \\ {\dfrac{f(t)}{t}} & \ \ \ \ \ \ \ \ \ & {\int_{s}^{\infty} F(\sigma)\ d\sigma} & \ & {} \end{array}\)

    Function Transform Region of convergence

    \(\begin{array} {lclcl} {1} & \ \ \ \ \ \ \ \ \ & {1/s} & \ \ \ \ \ \ \ \ & {\text{Re} (s) > 0} \\ {e^{at}} & \ \ \ \ \ \ \ \ \ & {1/(s - a)} & \ \ \ \ \ \ \ \ & {\text{Re} (s) > \text{Re} (a)} \\ {t} & \ \ \ \ \ \ \ \ \ & {1/s^2} & \ \ \ \ \ \ \ \ & {\text{Re} (s) > 0} \\ {t^n} & \ \ \ \ \ \ \ \ \ & {n!/s^{n + 1}} & \ \ \ \ \ \ \ \ & {\text{Re} (s) > 0} \\ {\cos (\omega t)} & \ \ \ \ \ \ \ \ \ & {s/(s^2 + \omega ^2)} & \ \ \ \ \ \ \ \ & {\text{Re} (s) > 0} \\ {\sin (\omega t)} & \ \ \ \ \ \ \ \ \ & {\omega /(s^2 + \omega ^2)} & \ \ \ \ \ \ \ \ & {\text{Re} (s) > 0} \\ {e^{at} \cos (\omega t)} & \ \ \ \ \ \ \ \ \ & {(s - a)/((s - a)^2 + \omega ^2)} & \ \ \ \ \ \ \ \ & {\text{Re} (s) > \text{Re} (a)} \\ {e^{at} \sin (\omega t)} & \ \ \ \ \ \ \ \ \ & {\omega /((s - a)^2 + \omega ^2)} & \ \ \ \ \ \ \ \ & {\text{Re} (s) > \text{Re} (a)} \\ {\delta (t)} & \ \ \ \ \ \ \ \ \ & {1} & \ \ \ \ \ \ \ \ & {\text{all } s} \\ {\delta (t - a)} & \ \ \ \ \ \ \ \ \ & {e^{-as}} & \ \ \ \ \ \ \ \ & {\text{all } s} \\ {\cosh (kt) = \dfrac{e^{kt} + e^{-kt}}{2}} & \ \ \ \ \ \ \ \ \ & {s/(s^2 - k^2)} & \ \ \ \ \ \ \ \ & {\text{Re} (s) > k} \\ {\sinh (kt) = \dfrac{e^{kt} - e^{-kt}}{2}} & \ \ \ \ \ \ \ \ \ & {k/(s^2 - k^2)} & \ \ \ \ \ \ \ \ & {\text{Re} (s) > k} \\ {\dfrac{1}{2\omega ^3} (\sin (\omega t) - \omega t \cos (\omega t))} & \ \ \ \ \ \ \ \ \ & {\dfrac{1}{(s^2 + \omega ^2)^2}} & \ \ \ \ \ \ \ \ & {\text{Re} (s) > 0} \\ {\dfrac{t}{2\omega} \sin (\omega t)} & \ \ \ \ \ \ \ \ \ & {\dfrac{s}{(s^2 + \omega ^2)^2}} & \ \ \ \ \ \ \ \ & {\text{Re} (s) > 0} \\ {\dfrac{1}{2\omega} (\sin (\omega t) + \omega t \cos (\omega t))} & \ \ \ \ \ \ \ \ \ & {\dfrac{s^2}{(s^2 + \omega ^2)^2}} & \ \ \ \ \ \ \ \ & {\text{Re} (s) > 0} \\ {t^n e^{at}} & \ \ \ \ \ \ \ \ \ & {n!/(s - a)^{n + 1}} & \ \ \ \ \ \ \ \ & {\text{Re} (s) > \text{Re} (a)} \\ {\dfrac{1}{\sqrt{\pi t}}} & \ \ \ \ \ \ \ \ \ & {\dfrac{1}{\sqrt{s}}} & \ \ \ \ \ \ \ \ & {\text{Re} (s) > 0} \\ {t^a} & \ \ \ \ \ \ \ \ \ & {\dfrac{\Gamma (a + 1)}{s^{a + 1}}} & \ \ \ \ \ \ \ \ & {\text{Re} (s) > 0} \end{array}\)


    This page titled 13.6: Table of Laplace transforms is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jeremy Orloff (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.