Skip to main content
Mathematics LibreTexts

14.3: Connection to Laplace

  • Page ID
    6559
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Claim

    For \(\text{Re}(z) > 1\) and \(\text{Re} (s) >0\), \(\mathcal{L} (t^{z -1}; s) = \dfrac{\Gamma (z)}{s^z}\).

    Proof

    By definition \(\mathcal{L} (t^{z -1}; s) = \int_{0}^{\infty} t^{z - 1} e^{-st} \ dt\). It is clear that if \(\text{Re} (z) > 1\), then the integral converges absolutely for \(\text{Re} (s) > 0\).

    Let’s start by assuming that \(s > 0\) is real. Use the change of variable \(\tau = st\). The Laplace integral becomes

    \[\int_{0}^{\infty} t^{z - 1} e^{-st} \ dt = \int_{0}^{\infty} (\dfrac{\tau}{s})^{z- 1} e^{-\tau} \dfrac{d \tau}{s} = \dfrac{1}{s^z} \int_{0}^{\infty} \tau ^{z - 1} e^{-\tau} = \dfrac{\Gamma (z)}{s^z} \ d\tau. \nonumber \]

    This shows that \(\mathcal{L} (t^{z -1}; s) = \dfrac{\Gamma (z)}{s^z})\) for \(s\) real and positive. Since both sides of this equation are analytic on \(\text{Re} (s) > 0\), the extension to Theorem 14.2.1 guarantees they are the same.

    Corollary

    \(\Gamma (z) = \mathcal{L} (t^{z - 1}; 1)\). (Of course, this is also clear directly from the definition of \(\Gamma (z)\) in Equation 14.3.1.


    This page titled 14.3: Connection to Laplace is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jeremy Orloff (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.