3.1: Limits of Functions
- Page ID
- 49106
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Let \(f: D \rightarrow \mathbb{R}\) and let \(\bar{x}\) be a limit point of \(D\). We say that \(f\) has a limit at \(\bar{x}\) if there exists a real number \(\ell\) such that for every \(\varepsilon>0\), there exists \(\delta>0\) with
\[|f(x)-\ell|<\varepsilon\]
for all \(x \in D\) for which \(0<|x-\bar{x}|<\delta\). In this case, we write
\[\lim _{x \rightarrow \bar{x}} f(x)=\ell.\]
Note that the limit point \(\bar{x}\) in the definition of limt may or may not be an element of the domain \(D\). In any case, the inequality \(|f(x)-\ell|<\varepsilon\) need only be satisfied by elements of \(D\).
Let \(f: \mathbb{R} \rightarrow \mathbb{R}\) be given by \(f(x)=5 x-7\). We prove that \(\lim _{x \rightarrow 2} f(x)=3\).
Solution
Let \(\varepsilon>0\). First note that \(|f(x)-2|=|5 x-7-3|=|5 x-10|=5|x-2|\). This suggests the choice \(\delta=\varepsilon / 5\). Then, if \(|x-2|<\delta\) we have
\[|f(x)-2|=5|x-2|<5 \delta=\varepsilon. \nonumber\]
Let \(f:[0,1) \rightarrow \mathbb{R}\) be given by \(f(x)=x^{2}+x\). Let \(\bar{x} =1\) and \(\ell = 2\).
Solution
First note that \(|f(x)-\ell|=\left|x^{2}+x-2\right|=|x-1||x+2|\) and for \(x \in[0,1)\). \(|x+2| \leq|x|+2 \leq 3\). Now, given \(\varepsilon>0\), choose \(\delta=\varepsilon / 3\). Then, if \(|x-1|<\delta\) and \(x \in[0,1)\), we have
\[|f(x)-\ell|=\left|x^{2}+x-2\right|=|x-1||x+2|<3 \delta=3 \frac{\varepsilon}{3}=\varepsilon. \nonumber\]
This shows that \(\lim _{x \rightarrow 1} f(x)=2\).
Let \(f: \mathbb{R} \rightarrow \mathbb{R}\) be given by \(f(x)=x^{2}\). We show that \(\lim _{x \rightarrow 2} f(x)=4\).
Solution
First note that \(|f(x)-4|=\left|x^{2}-4\right|=|(x-2)(x+2)|=|x-2||x+2|\). Since the domain is all of \(\mathbb{R}\) the expression \(|x+2|\) is not bounded and we cannot proceed as in Example \(\PageIndex{2}\). However, we are interested only in values of \(x\) close to \(2\) and, thus, we impose the condition \(\delta \leq 1\). If \(|x-2|<1\), then \(-1<x-2<1\) and, so, \(1<x<3\). It follows, for such \(x\), that \(|x|<3\) and, hence \(|x|+2<5\).
Now, given \(\varepsilon>0\) we choose \(\delta=\min \left\{1, \frac{\varepsilon}{5}\right\}\). Then, whenever \(|x-2|<\delta\) we get
\[|f(x)-4|=|x-2| x+2|\leq| x-2|(|x|+2)<\delta 5 \leq \varepsilon. \nonumber\]
Let \(f: \mathbb{R} \rightarrow \mathbb{R}\) be given by \(f(x)=\frac{3 x-5}{x^{2}+3}\). We prove that \(\lim _{x \rightarrow 1} f(x)=-\frac{1}{2}\).
Solution
First we look at the expression \(\left|f(x)-\left(-\frac{1}{2}\right)\right|\) and try to identify a factor \(|x-1|\) (because here \(\bar{x} = 1\).
\[\left|f(x)-\left(-\frac{1}{2}\right)\right|=\left|\frac{3 x-5}{x^{2}+3}+\frac{1}{2}\right|=\left|\frac{6 x-10+x^{2}+3}{x^{2}+3}\right|=\frac{|x-1||x+7|}{2\left(x^{2}+3\right)} \leq \frac{1}{6}|x-1||x+7|. \nonumber\]
Proceeding as in the previous example, if \(|x-1|<1\) we get \(-1<x-1<1\) and, so, \(0<x<2\). Thus \(|x|<2\) and \(|x+7| \leq|x|+2<9\).
Now, given \(\varepsilon>0\), we choose \(\delta=\min \left\{1, \frac{2}{3} \varepsilon\right\}\). It follows that if \(|x-1|<\delta\) we get
\[\left|f(x)-\left(-\frac{1}{2}\right)\right| \leq \frac{|x+7|}{6}|x-1|<\frac{9}{6} \delta \leq \varepsilon. \nonumber\]
The following theorem will let us apply our earlier results on limits of sequences to obtain new results on limits of functions.
Let \(f: D \rightarrow \mathbb{R}\) and let \(\bar{x}\) be a limit point of \(D\). Then
\[\lim _{x \rightarrow \bar{x}} f(x)=\ell\]
if and only if
\[\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\ell\]
for every sequence \(\left\{x_{n}\right\}\) in \(D\) such that \(x_{n} \neq \bar{x}\) for every \(n\) and \(\left\{x_{n}\right\}\) converges to \(\bar{x}\).
- Proof
-
Suppose (3.1) holds. Let \(\left\{x_{n}\right\}\) be a sequence in \(D\) with \(x_{n} \neq \bar{x}\) for every \(n\) and such that \(\left\{x_{n}\right\}\) converges to \(\bar{x}\). given any \(\varepsilon>0\), there exists \(\delta > 0\) such that \(|f(x)-\ell|<\varepsilon\) whenever \(x \in D\) and \(0<|x-\bar{x}|<\delta\). Then there exists \(N \in \mathbb{N}\) with \(0<\left|x_{n}-\bar{x}\right|<\delta\) for all \(n \geq N\). For such \(n\), we have
\[\left|f\left(x_{n}\right)-\ell\right|<\varepsilon.\]
This implies (3.2).
Conversely, suppose (3.1) is false. Then there exists \(\varepsilon_{0}>0\) such that for every \(\delta > 0\), there exists \(x \in D\) with \(0<|x-\bar{x}|<\delta\) and \(|f(x)-\ell| \geq \varepsilon_{0}\). Thus, for every \(n \in \mathbb{N}\), there exits \(x_{n} \in D\) with \(0<\left|x_{n}-\bar{x}\right|<\frac{1}{n}\) and \(\left|f\left(x_{n}\right)-\ell\right| \geq \varepsilon_{0}\). By the squeeze theorem (Theorem 2.1.6), the sequence \(\left\{x_{n}\right\}\) converges to \(\bar{x}\). Moreover, \(x_{n} \neq \bar{x}\) for every \(n\). This shows that (3.2) is false. It follows that (3.2) implies (3.1) and the proof is complete.
\(\square\)
Let \(f: D \rightarrow \mathbb{R}\) and let \(\bar{x}\) be a limit point of \(D\). \(f\) has a limit at \(\bar{x}\), then this limit is unique.
- Proof
-
Suppose by contradiction that \(f\) has two different limits \(\ell_{1}\) and \(\ell_{2}\). \(\left\{x_{n}\right\}\) be a sequence in \(D \backslash\{\bar{x}\}\) that converges to \(\bar{x}\). By Theorem 3.1.2, the sequence \(\left\{f\left(x_{n}\right)\right\}\) converges to two different limits \(\ell_{1}\) and \(\ell_{2}\). this is a contradiction to Theorem 2.1.3. \(\square\)
The following corollary follows directly from Theorem 3.1.2.
Let \(f: D \rightarrow \mathbb{R}\) and let \(\bar{x}\) be a limit point of \(D\). Then \(f\) does not have a limit at \(\bar{x}\) if and only if there exists a sequence \(\left\{x_{n}\right\}\) in \(D\) such that \(x_{n} \neq \bar{x}\) for every \(n\), \(\left\{x_{n}\right\}\) converges to \(\bar{x}\), and \(\left\{f\left(x_{n}\right)\right\}\) does not converge.
- Proof
-
Add proof here and it will automatically be hidden
Consider the Dirichlet function \(f: \mathbb{R} \rightarrow \mathbb{R}\) given by
\[f(x)=\left\{\begin{array}{ll}
1, & \text { if } x \in \mathbb{Q} \\
0, & \text { if } x \in \mathbb{Q}^{c}
\end{array}\right .\]
Then \(\lim _{x \rightarrow \bar{x}} f(x)\) does not exist for any \(\bar{x} \in \mathbb{R}\).
Solution
Indeed, fix \(\bar{x} \in \mathbb{R}\) and choose two sequences \(\left\{r_{n}\right\}\), \(\left\{s_{n}\right\}\) converging to \(\bar{x}\) such that \(r_{n} \in \mathbb{Q}\) and \(s_{n} \notin \mathbb{Q}\) for all \(n \in \mathbb{N}\). Define a new sequence \(\left\{x_{n}\right\}\) by
\[x_{n}=\left\{\begin{array}{ll}
r_{k}, & \text { if } n=2 k \\
s_{k}, & \text { if } n=2 k-1
\end{array}\right .\]
It is clear that \(\left\{x_{n}\right\}\) converges to \(\bar{x}\). Moreover, since \(\left\{f\left(r_{n}\right)\right\}\) converges to \(1\) and \(\left\{f\left(s_{n}\right)\right\}\) converges to \(0\). Theorem 2.1.9 implies that the sequence \(\left\{f\left(x_{n}\right)\right\}\) does not converge. It follows from the sequential characterization of limits that \(\lim _{x \rightarrow \bar{x}} f(x)\) does not exists.
Let \(f, g: D \rightarrow \mathbb{R}\) and let \(\bar{x}\) be a limit point of \(D\). Suppose that
\[\lim _{x \rightarrow \bar{x}} f(x)=\ell_{1}, \lim _{x \rightarrow \bar{x}} g(x)=\ell_{2} ,\]
and that there exists \(\delta>0\) such that
\[f(x) \leq g(x) \text { for all } x \in B(\bar{x} ; \delta) \cap D, x \neq \bar{x} .\]
Then \(\ell_{1} \leq \ell_{2}\)
- Proof
-
Let \(\left\{x_{n}\right\}\) be a sequence in \(B(\bar{x} ; \delta) \cap D=(\bar{x}-\delta, \bar{x}+\delta) \cap D\) that converges to \(\bar{x}\) and \(x_{n} \neq \bar{x}\) for all \(n\). By Theorem 3.1.2,
\[\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\ell_{1} \text { and } \lim _{n \rightarrow \infty} g\left(x_{n}\right)=\ell_{2} .\]
Since \(f\left(x_{n}\right) \leq g\left(x_{n}\right)\) for all \(n \in \mathbb{N}\), applyig Theorem 2.1.5, we obtain \(\ell_{1} \leq \ell_{2}\). \(\square\)
Let \(f, g: D \rightarrow \mathbb{R}\) and let \(\bar{x}\) be a limit point of \(D\). Suppose
\[\lim _{x \rightarrow \bar{x}} f(x)=\ell_{1}, \lim _{x \rightarrow \bar{x}} g(x)=\ell_{2} ,\]
and \(\ell_{1}<\ell_{2}\). Then there exists \(\delta > 0\) such that
\[f(x)<g(x) \text { for all } x \in B(\bar{x} ; \delta) \cap D, x \neq \bar{x} .\]
- Proof
-
Choose \(\varepsilon>0\) such that \(\ell_{1}+\varepsilon<\ell_{2}-\varepsilon\) (equivalently, such that \(\varepsilon<\frac{\ell_{2}-\ell_{1}}{2}\)). Then there exists \(\delta > 0\) such that
\[\ell_{1}-\varepsilon<f(x)<\ell_{1}+\varepsilon \text { and } \ell_{2}-\varepsilon<g(x)<\ell_{2}+\varepsilon\]
for all \(x \in B(\bar{x} ; \delta) \cap D, x \neq \bar{x}\). Thus,
\[f(x)<\ell_{1}+\varepsilon<\ell_{2}-\varepsilon<g(x) \text { for all } x \in B(\bar{x} ; \delta) \cap D, x \neq \bar{x} .\]
The proof is now complete. \(\square\)
Let \(f, g, h: D \rightarrow \mathbb{R}\) and let \(\bar{x}\) be a limit point of \(D\). Suppose there exists \(\delta > 0\) such that \(f(x) \leq g(x) \leq h(x)\) for all \(x \in B(\bar{x} ; \delta) \cap D, x \neq \bar{x}\). If \(\lim _{x \rightarrow \bar{x}} f(x)=\lim _{x \rightarrow \bar{x}} h(x)=\ell\), then \(\lim _{x \rightarrow \bar{x}} g(x)=\ell\).
- Proof
-
The proof is straightforward using Theorem 2.1.6 and Theorem 3.1.2. \(\square\)
We will adopt the following convention. When we write \(\lim _{x \rightarrow \bar{x}} f(x)\) without specifying the domain \(D\) of \(f\) we will assume the \(D\) is the largest subset of \(\mathbb{R}\) such that if \(x \in D\), then \(f(x)\) results in a real number. For example, in
\[\lim _{x \rightarrow 2} \frac{1}{x+3}\]
we assume \(D=\mathbb{R} \backslash\{-3\}\) and in
\[\lim _{x \rightarrow 1} \sqrt{x}\]
we assume \(D=[0, \infty)\).
Exercise \(\PageIndex{1}\)
Use the definition of limit to prove that
- \(\lim _{x \rightarrow 2} 3 x-7=-1\)
- \(\lim _{x \rightarrow 3}\left(x^{2}+1\right)=10\).
- \(\lim _{x \rightarrow 1} \frac{x+3}{x+1}=2\).
- \(\lim _{x \rightarrow 0} \sqrt{x}=0\).
- \(\lim _{x \rightarrow 2} x^{3}=8\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{2}\)
Prove that the following limits do not exist.
- \(\lim _{x \rightarrow 0} \frac{x}{|x|}\).
- \(\lim _{x \rightarrow 0} \cos (1 / x)\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{3}\)
Let \(f: D \rightarrow \mathbb{R}\) and let \(\bar{x}\) be a limit point of \(D\). Prove that if \(\lim _{x \rightarrow \bar{x}} f(x)=\ell\), then
\[\lim _{x \rightarrow \bar{x}}|f(x)|=|\ell| .\]
Give an example to show that the convers is not true in general.
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{4}\)
Let \(f: D \rightarrow \mathbb{R}\) and let \(\bar{x}\) be a limit point of \(D\). Suppose \(f(x) \geq 0\) for all \(x \in D\). Prove that if \(\lim _{x \rightarrow \bar{x}} f(x)=\ell\), then
\[\lim _{x \rightarrow \bar{x}} \sqrt{f(x)}=\sqrt{\ell} .\]
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{5}\)
Find \(\lim _{x \rightarrow 0} x \sin (1 / x)\).
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{6}\)
Let \(f\) be the function given by
\[f(x)=\left\{\begin{array}{ll}
x, & \text { if } x \in \mathbb{Q} \cap[0,1] \text{;} \\
1-x, & \text { if } x \in \mathbb{Q}^{c} \cap[0,1] \text{.}
\end{array}\right .\]
Determine which of the following limits exist. For those that exist find their values.
- \(\lim _{x \rightarrow 1 / 2} f(x)\).
- \(\lim _{x \rightarrow 0} f(x)\).
- \(\lim _{x \rightarrow 1} f(x)\).
- Answer
-
Add texts here. Do not delete this text first.