Skip to main content
Mathematics LibreTexts

4.E: Convergence of Sequences and Series (Exercises)

  • Page ID
    7940
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Q1

    Prove that if \(\lim_{n \to \infty }s_n = s\) then \(\lim_{n \to \infty }\left |s_n \right | = \left |s \right |\). Prove that the converse is true when \(s = 0\), but it is not necessarily true otherwise.

    Q2

    1. Let \((s_n)\) and \((t_n)\) be sequences with \(s_n ≤ t_n,∀n\). Suppose \(\lim_{n \to \infty }s_n = s\) and \(\lim_{n \to \infty }t_n = t\). Prove \(s ≤ t\). [Hint: Assume for contradiction, that \(s > t\) and use the definition of convergence with \(ε = \(frac{s-t}{2}\) to produce an \(n\) with \(s_n > t_n\).]
    2. Prove that if a sequence converges, then its limit is unique. That is, prove that if \(\lim_{n \to \infty }s_n = s\) and \(\lim_{n \to \infty }s_n = s\), then \(s = t\).

    Q3

    Prove that if the sequence \((s_n)\) is bounded then \(\lim_{n \to \infty }\left (\frac{s_n}{n} \right ) = 0\).

    Q4

    1. Prove that if \(x \neq 1\), then \[1 + x + x^2 +\cdots + x^n = \frac{1 - x^{n+1}}{1-x}\]
    2. Use (a) to prove that if \(|x| < 1\), then \(\lim_{n \to \infty }\left ( \sum_{j=0}^{n} x^j \right ) = \frac{1}{1-x}\)

    Q5

    Prove \[\lim_{n \to \infty }\frac{a_0 + a_1n + a_2n^2 +\cdots + a_kn^k}{b_0 + b_1n + b_2n^2 +\cdots + b_kn^k} = \frac{a_k}{b_k}\]

    provided \(b_k \neq 0\). [Notice that since a polynomial only has finitely many roots, then the denominator will be non-zero when n is sufficiently large.]

    Q6

    Prove that if \(\lim_{n \to \infty }s_n = s\) and \(\lim_{n \to \infty }(s_n - t_n) = 0\), then \(\lim_{n \to \infty }t_n = s\).

    Q7

    1. Prove that if \(\lim_{n \to \infty }s_n = s\) and \(s < t\), then there exists a real number \(N\) such that if \(n > N\) then \(s_n < t\).
    2. Prove that if \(\lim_{n \to \infty }s_n = s\) and \(r < s\), then there exists a real number \(M\) such that if \(n > M\) then \(r < s_n\).

    Q8

    Suppose \((s_n)\) is a sequence of positive numbers such that \(\lim_{n \to \infty }\left ( \frac{s_{n+1}}{s_n} \right ) = L\)

    1. Prove that if \(L < 1\), then \(\lim_{n \to \infty }s_n = 0\). [Hint: Choose \(R\) with \(L < R < 1\). By the previous problem, \(∃\; N\) such that if \(n > N\), then \(\frac{s_{n+1}}{s_n} < R\). Let \(n_0 > N\) be fixed and show \(s_{n_0+k} < R^ks_{n_0}\). Conclude that \(\lim_{k \to \infty }s_{n_0+k} = 0\) and let \(n = n_0 + k\).]
    2. Let \(c\) be a positive real number. Prove \[\lim_{n \to \infty }\left ( \frac{c^n}{n!} \right ) = 0\]

    This page titled 4.E: Convergence of Sequences and Series (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Eugene Boman and Robert Rogers (OpenSUNY) via source content that was edited to the style and standards of the LibreTexts platform.