3.5: Variation of Parameters
- Page ID
- 405
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In the last section we solved nonhomogeneous differential equations using the method of undetermined coefficients. This method fails to find a solution when the functions g(t) does not generate a UC-Set. For example if \(g(t)\) is \(\sec(t), \; t^{-1}, \;\ln t\), etc, we must use another approach. The approach that we will use is similar to reduction of order. Our method will be called variation of parameters.
Consider the differential equation
\[ L(y) = y'' + p(t)y' + q(t)y = g(t),\]
and let \(y_1\) and \(y_2\) be solutions to the corresponding homogeneous differential equation
\[ L(y) = 0.\]
We write the particular solution is of the form
\[ y_p = u_1y_1 + u_2y_2\]
where \(u_1\) and \(u_2\) are both functions of \(t\). Notice that this is always possible, by setting
\[ u_1 = \dfrac {1}{y_1} \;\;\; \text{and} \;\;\; u_2 = \dfrac {( y_p - 1)}{y_2}. \]
Actually more can be said, since we are choosing two parameters to find one solution, we can impose one additional condition on the \( u_1\) and \( u_2 \) and still end up with a solution. We make the assumption that
\[ u_1' y_1 + u_2' y_2 = 0.\]
This assumption will come in handy later.
Next take the derivative
\[ y'_p = u'_1y_1 + u_1y'_1 + u'_2y_2 + u_2y'_2. \]
The assumption helps us simplify \(y'_p\) as
\[ y'_p = u_1y'_1 + u_2y'_2. \]
Now take a second derivative
\[ y''_p = u'_1y'_1 + u_1y''_1 + u'_2y'_2 + u_2y''_2. \]
Now substitute into the original differential equation to get
\[ (u'_1y'_1 + u_1y''_1 + u'_2y'_2 + u_2y''_2) + p(t)(u_1y'_1 + u_2y'_2) + q(t)(u_1y_1 + u_2y_2) = g(t). \]
Combine terms with common \(u\)'s, we get
\[ u_1 (y''_1 + p(t)y'_1 + q(t)y_1) + u_2(y''_2 + p(t)y'_2 + q(t)y_2) + u'_1y'_1 + u'_2y'_2 = g(t). \]
Now notice that since \(y_1\) and \( y_2\) are solutions to the differential equation, both expressions in the parentheses are zero. We have
\[ u'_1y'_1 + u'_2y'_2 = g(t). \]
This equation along with the assumption give a system of two equations and two unknowns
\[ u'_1y_1 + u'_2y_2 = 0 \]
\[ u'_1y'_1 + u'_2y'_2 = g(t). \]
Using matrices we get
\[ \begin{pmatrix} y_1 y_2 \\ y'_1 y'_2 \end{pmatrix} \begin{pmatrix} u'_1\\ u'_2 \end{pmatrix} = \begin{pmatrix} 0 \\ g(t) \end{pmatrix}\]
We recognize the first matrix as the matrix for the Wronskian. Calling this \(W\), and recalling that the Wronskian of two linearly independent solutions is never zero we can take \(W^{-1}\) of both sides to get
\[ \begin{pmatrix} u'_1\\ u'_2 \end{pmatrix} = W^{-1} \begin{pmatrix} 0 \\ g(t) \end{pmatrix} \]
We integrate to find \(u_1\) and \(u_2\).
\[ \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \int W^{-1} \begin{pmatrix} 0 \\ g(t) \end{pmatrix} dt. \]
Given that
\[ y_1 = x^2 \quad \text{ and } \quad y_2 = x^2 \ln x \nonumber \]
are solutions to
\[ x^2y'' - 3xy' + 4y = x^2 \ln x \nonumber \]
to the corresponding homogeneous differential equation, find the general solution to the nonhomogeneous differential equation.
Solution
First, we divide by \( x^2 \) to get the differential equation in standard form
\[ y'' - \dfrac {3}{x} y' + \dfrac {4}{x^2}y = \ln x.\nonumber \]
We let
\[ y_p = u_1y_1 + u_2y_2 . \nonumber \]
The Wronskian matrix is
\[ W = \begin{pmatrix} x^2 x^2 \ln x \\ 2x x + 2x \ln x \end{pmatrix}.\nonumber \]
We use the adjoint formula to find the inverse matrix. First the Wronskian is the determinant which is
\[ w = x^3 + 2x^3 \ln x - 2x^3 \ln x = x^3.\nonumber \]
So the inverse is
\[ W^{-1} = \dfrac {1}{x^3} \begin{pmatrix} x + 2x \ln x -x^2 \ln x \\ -2x x^2 \end{pmatrix}.\nonumber \]
We have
\[\begin{pmatrix} u'_1 \\ u'_2 \end{pmatrix} = \dfrac {1}{x^3} \begin{pmatrix} x + 2x \ln x -x^2 \ln x \\ -2x x^2 \end{pmatrix} \begin{pmatrix} 0 \\ \ln x \end{pmatrix} \]
\[= \dfrac {1}{x^3} \begin{pmatrix} -x^2 {\left ( \ln x \right )}^2 \\ x^2 \ln x \end{pmatrix} = \begin{pmatrix} -\dfrac{{(\ln x)}^2 }{x} \\ \dfrac {\ln x}{x} \end{pmatrix}\nonumber \]
Integrating using u-substitution gives
\[ u_1 =\dfrac{-(\ln x)^3}{3}, \nonumber \]
\[ u_2 = \dfrac{(\ln x)^2}{2}.\nonumber \]
We have
\[ y_p = - \dfrac {1}{3} x^2 {\left ( \ln x \right )}^3 + \dfrac {1}{2} x^2 {\left ( \ln x \right )}^3 = \dfrac {1}{6}x^2{\left ( \ln x \right )}^3.\nonumber \]
Finally we get
\[ y = c_1 x^2 + c_2 x^2 \ln x + \dfrac{1}{6} x^2(\ln x)^3. \nonumber \]
Contributors and Attributions
- Larry Green (Lake Tahoe Community College)
Integrated by Justin Marshall.