Skip to main content
Mathematics LibreTexts

4.7: TMS VIII #1

  • Page ID
    47615
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1 The surface \(10^{\prime}\). The 4th of the width to the width I have joined, to 3 I have gone … over

    2 the length \(5^{\prime}\) went beyond. You, 4, of the fourth, as much as width posit. The fourth of 4 take, 1 you see.

    3 1 to 3 go, 3 you see. 4 fourths of the width to 3 join, 7 you see.

    4 7 as much as length posit. \(5^{\prime}\) the going-beyond to the to-be-torn-out of the length posit. 7, of the length, to 4, ¿of the width?, raise,

    5 28 you see. 28, of the surfaces, to \(10^{\prime}\) the surface raise, \(4^{\circ}40^{\prime}\) you see.

    6 \(5^{\prime}\), the to-be-torn-out of the length, to four, of the width, raise, \(20^{\prime}\) you see. \(\frac{1}{2}\) break, \(10^{\prime}\) you see. \(10^{\prime}\) make hold,

    7 \(1^{\prime} 40^{\prime \prime}\) you see. \(1^{\prime} 40^{\prime \prime}\) to \(4^{\circ}40^{\prime}\) join, \(4^{\circ} 41^{\prime} 40^{\prime \prime}\) you see. What is equal? \(2^{\circ} 10^{\prime}\) you see.

    8 \(10^{\prime}\) ¿? to \(2^{\circ} 10^{\prime}\) join, \(2^{\circ} 20^{\prime}\) you see. What to 28, of the surfaces, may I posit which \(2^{\circ} 10^{\prime}\) gives me?

    9 \(5^{\prime}\) posit. \(5^{\prime}\) to 7 raise, \(35^{\prime}\) you see. \(5^{\prime}\), the to-be-torn-out of the length, from \(35^{\prime}\) tear out,

    10 \(30^{\prime}\) you see, \(30^{\prime}\) the length. \(5^{\prime}\) the length to 4 of the width raise, \(20^{\prime}\) you see, 20 the length (mistake for width).

    In BM 13901 #12 we saw how a problem about squares could be reduced to a rectangle problem. Here, on the contrary, a problem about a rectangle is reduced to a problem about squares.

    Translated into symbols, the problem is the following;

    \(\frac{7}{4} w-\ell=5^{\prime}\), alt\((\ell, w)=10^{\prime}\)

    (“to 3 I have gone” in line 1 means that the “joining” of \(\frac{1}{4} w\) in line 1 is repeated thrice). The problem could have been solved in agreement with the methods used in TMS IX #3 (page 57), that is, in the following way:

    \(7 w-4 \ell=4 \cdot 5^{\prime}\), alt\((\ell, w)=10^{\prime}\)

    \(7 w-4 \ell=20^{\prime}\), alt\((7 w, 4 \ell)=(7 \cdot 4) \cdot 10^{\prime}=28 \cdot 10^{\prime}=4^{\circ} 40^{\prime}\)

    \(7 w=\sqrt{4^{\circ} 40^{\prime}+\left(\frac{20^{\prime}}{2}\right)^{2}}+\frac{20^{\prime}}{2}=2^{\circ} 20\),

    \(\begin{array}{l}
    4 \ell=\sqrt{4^{\circ} 40^{\prime}+\left(\frac{20^{\prime}}{2}\right)^{2}}-\frac{20^{\prime}}{2}=2 \\
    w=20^{\prime}, \quad \ell=30^{\prime}
    \end{array}\).

    bigImagesFigure34.png
    Figure \(4.13\): The method of TMS VIII #1.

    However, once again the calculator shows that he has several strings on his bow, and that he can choose between them as he finds convenient. Here he builds his approach on a square whose side \((z)\) is \(\frac{1}{4}\) of the width (Figure 4.13). In that way, the width will equal 4, understood as 4 \(z\) (You, 4, of the fourth, as much as width posit), and the length prolonged by \(5^{\prime}\) will be equal to 7, understood as \(7z\) (7 as much as possible). Line 4 finds that the rectangle with sides \(7z\) and \(4z\)—in other words, the initial rectangle prolonged by \(5^{\prime}\)—consists of \(7 \cdot 4=28\) small squares \(\square(z)\).11 These 28 squares exceed the area \(10^{\prime}\) by a certain number of sides (\(n \cdot z\)), the determination of which is postponed until later. As usual, indeed, the non-normalized problem

    \(28 \square(z)-n \cdot z=10^{\prime}\)

    is transformed into

    \(\square(28 z)-n \cdot(28 z)=28 \cdot 10^{\prime}=4^{\circ} 40^{\prime}\).

    Line 6 finds \(n=4 \cdot 5^{\prime}=20^{\prime}\), and from here onward everything follows the routine, as can be seen on Figure 4.14: 28 \(z\) will be equal to \(2^{\circ} 20\), and \(z\) hence to \(5^{\prime}\).12 Therefore, the length \(\ell\) will be \(7 \cdot 5^{\prime}-5^{\prime}=30^{\prime}\), and the width \(w\) \(4 \cdot 5^{\prime}=20^{\prime}\).

    bigImagesFigure35.png
    Figure \(4.14\): Resolution of the normalized equation of TMS VIII #1.

    This page titled 4.7: TMS VIII #1 is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Jens Høyrup via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?