5.S: Marketing and Accounting Fundamentals (Summary)
- Page ID
- 22092
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Key Concepts Summary
5.1: Cost-Revenue-Net Income Analysis (Need to Be in the Know)
- The three different types of costs
- How to determine the unit variable cost
- Calculating net income when you know total revenue and total cost
- Calculating net income when you know the contribution margin
- Comparing varying contribution margins by calculating a contribution rate
- Integrating all of the concepts together
5.2: Break-Even Analysis (Sink or Swim)
- Explanation of break-even analysis
- How to calculate the break-even point expressed in the level of output
- How to calculate the break-even point expressed in total revenue dollars
The Language of Business Mathematics
- blended cost
-
A cost that comprises both fixed cost and variable cost components.
- break-even analysis
-
An analysis of the relationship between costs, revenues, and net income with the sole purpose of determining the point at which total revenue equals total cost.
- break-even point
-
A quantity that represents the level of output (in units or dollars) at which all costs are paid but no profits are earned, resulting in a net income equal to zero.
- contribution margin
-
The amount each unit sold adds to the net income of the business.
- contribution rate
-
A contribution margin expressed as a percentage of the selling price.
- cost
-
An outlay of money required to produce, acquire, or maintain a product, which includes both physical goods and services.
- economies of scale
-
The principle that, as production levels rise, per-unit variable costs tend to become lower as efficiencies are achieved.
- fixed cost
-
A cost that does not change with the level of production or sales.
- net income
-
The amount of money left over after all costs are deducted from all revenues.
- total fixed cost
-
The sum of all fixed costs that a business incurs.
- total cost
-
The sum of all costs for the company, including both the total fixed costs and total variable costs.
- total revenue
-
The entire amount of money received by a company for selling its product, calculated by multiplying the quantity sold by the selling price.
- total variable cost
-
The sum of all variable costs that a business incurs at a particular level of output.
- unit variable cost
-
The assignment of total variable costs on a per-unit basis.
- variable cost
-
A cost that changes with the level of production or sales.
The Formulas You Need to Know
Symbols Used
\(CM\) = unit contribution margin
\(CR\) = contribution rate
\(n\) = number of pieces of data, which in this chapter is the level of output
\(NI\) = net income
\(S\) = unit selling price of the product
\(TFC\) = total fixed cost
\(TR\) = total revenue
\(TVC\) = total variable cost
\(VC\) = unit variable cost
Formulas Introduced
Formula 5.1 Unit Variable Cost: \(VC=\dfrac{TVC}{n}\)
Formula 5.2 Net Income Using a Total Revenue and Cost Approach: \(NI=n(S)-(TFC+n(VC))\)
Formula 5.3 Unit Contribution Margin: \(CM=S-VC\)
Formula 5.4 Net Income Using Total Contribution Margin Approach: \(NI=n(CM)-TFC\)
Formula 5.5 Contribution Rate if Unit Information Is Known: \(CR=\dfrac{CM}{S} \times 100\)
Formula 5.6 Contribution Rate if Aggregate Information Is Known: \(CR=\dfrac{TR-TVC}{TR} \times 100\)
Formula 5.7 Unit Break-Even: \(n=\dfrac{TFC}{CM}\)
Formula 5.8 Dollar Break-Even: \(TR=\dfrac{TFC}{CR}\)
Technology
Calculator
Net Income or Break-Even
- 2nd Brkevn to open the function
- To clear the memory before entering any data, press 2nd CLR Work after opening the function. Use and to scroll through the function.
- Enter four of the following variables and press Enter after each to save:
\(FC\) = Total fixed costs
\(VC\) = Unit variable cost
\(P\) = Selling price per unit
\(PFT\) = Net income
\(Q\)= Level of output
- Press CPT on the unknown variable (when it is on the screen display) to compute.