Skip to main content
Mathematics LibreTexts

10.7.0: Exercises

  • Page ID
    171798
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Exercise \(\PageIndex{1}\)

    Find the volume of the right triangular prism with the two side legs of the base equal to 10 m, the hypotenuse equal to \(10\sqrt 2 \), and the height or the length, depending on your viewpoint, is equal to 15 m.

    A right triangular prism. The legs of the triangle measure 10 meters, 10 meters. The hypotenuse measures 10 times the square root of 2. The length of the prism is 15 inches.

    Exercise \(\PageIndex{2}\)

    Find the surface area of the right triangular prism in the Exercise 1 with the two legs of the base equal to 10 m, and the height equal to 15 m.

    Exercise \(\PageIndex{3}\)

    Find the surface area of the right trapezoidal prism with side \({\text{a = }}5\,{\text{cm}}\), side \({\text{b = }}{\text{12}}\,{\text{cm}}\), the height is 10 cm, the slant length is 12 cm, and the length is 24 cm.

    A right trapezoidal prism. The top and bottom bases of the trapezoid measure a and b. The sides of the trapezoid measure 12 centimeters. The height of the trapezoid is marked h equals 10. The length of the prism is marked 24 centimeters.

    Exercise \(\PageIndex{4}\)

    Find the volume of the trapezoidal prism in the exercise above where the base and top have the following measurements: side \(a = 5\,\text{cm}\), side \(b = 12\,\text{cm}\), the slant lengths are each \(12\,\text{cm}\), and the height of the trapezoidal base =\(10\,\text{cm}\). The height or length of the three-dimensional solid is \(24\,\text{cm}\).

    Exercise \(\PageIndex{5}\)

    Find the surface area of the octagonal prism. The base and top are regular octagons with the apothem equal to 10 m, a side length equal to 12 m, and a height of 30 m.

    Two views of the octagonal prism. In the first view, the height of the prism is marked 30 meters. The sides of the octagon measure 12 meters. In the second view, the apothem is marked 10 meters. The sides of the octagon measure 12 meters.

    Exercise \(\PageIndex{6}\)

    Find the volume for the right octagonal prism, with the apothem equal to 10 m, the side length of the base is equal to 12 m, and the height equal to 30 m.

    Exercise \(\PageIndex{7}\)

    You decide to paint the living room. You will need the surface area of the 4 walls and the ceiling. The room measures 20 ft long and 14 ft wide, and the ceiling is 8 ft high.

    For the following exercises, find the surface area of each right cylinder.

    Exercise \(\PageIndex{8}\)

    \(r = 6\,\text{cm},\,h = 5\,\text{cm}\)

    Exercise \(\PageIndex{9}\)

    \(r = 9\,\text{cm},\,h = 15\,\text{cm}\)

    Exercise \(\PageIndex{10}\)

    \(r = 12.2\,\text{in},\,h = 30\,\text{in}\)

    Exercise \(\PageIndex{11}\)

    \(r = 3.4\,\text{m},\,h = 10.5\,\text{m}\)

    Exercise \(\PageIndex{12}\)

    \(d = 11.4\,\text{m},\,h = 4.4\,\text{m}\)

    Exercise \(\PageIndex{13}\)

    \(d = 20\,\text{in},\,h = 8.5\,\text{in}\)

    For the following exercises, find the volume of each right cylinder to the nearest tenth.

    Exercise \(\PageIndex{14}\)

    \(r = 7\,\text{cm},\,h = 8\,\text{cm}\)

    Exercise \(\PageIndex{15}\)

    \(r = 14\,\text{cm},\,h = 19\,\text{cm}\)

    Exercise \(\PageIndex{16}\)

    \(r = 14\,\text{in},\,h = 30\,\text{in}\)

    Exercise \(\PageIndex{17}\)

    \(r = 4.9\,\text{m},\,h = 17\,\text{m}\)

    Exercise \(\PageIndex{18}\)

    \(r = 12.6\,\text{cm},\,h = 16.2\,\text{cm}\)

    Exercise \(\PageIndex{19}\)

    You have remodeled your kitchen and the exhaust pipe above the stove must pass through an overhead cabinet as shown in the figure. Find the volume of the remaining space in the cabinet.

    A cylinder is enclosed within a rectangular prism. The length, width, and height of the rectangular prism are marked 30 inches, 14 inches, and 18 inches. The radius of the cylinder is marked r equals 7. The top and bottom bases of the cylinder rest on the top and bottom bases of the prism.


    10.7.0: Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?